Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Computation of Space-Time Patterns via ALE Methods

V. Thümmler1, and A. Weddemann2
1Department of Mathematics, Bielefeld University, Bielefeld, Germany
2Department of Physics, Bielefeld University, Bielefeld, Germany

Partial differential equations which exhibit solutions that are spatial temporal patterns are often found in biological and chemical systems, e.g. when describing pattern formation in reaction-diffusion systems.Special classes of such patterns are relative equilibria and relative periodic orbits, which are solutions that in an appropriately co-moving frame of reference are stationary and ...

Perspectives of Thermo-electro-mechanical Micro Actuators for Micro Switch Applications: Design and Simulation

M. Matmat, M. Al Ahmad, and J. Y. Fourniols
Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS-CNRS), Toulouse, France

In this work, thermo-mechanical simulations employing a 3D finite element analysis (FEA) of a current driven V-shaped actuator is presented. The structure's hot arms consist of polysilicon, which was used as the active material for deflection due to the Joule effect.COMSOL Multiphysics with stationary and parametric solvers was used to calculate the resulting deflection when current is applied. ...

On the Simulation of the Metabolism in Mammalian Cells using Homogenization Methods

M. Hanke, and M. Cabauatan-Villanueva
School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden

The simulation of the metabolism in mammalian cells becomes a severe problem if spatial distributions must be taken into account. Especially the cytoplasma has a very complex geometric structure which cannot be handled by standard discretization techniques. In the present paper we propose a homogenization technique for computing effective diffusion constants. This is accomplished by using a ...

A non-Conventional use of COMSOL to Solve a Complex 3D Geometrical Problem

J. P. Caire, and F. Jomard
LEPMI, ENSEEG, Saint Martin d'Hères, France

The purpose of this study was the optimization of an industrial furnace from a thermal point of view. Such a cylindrical furnace contains an Al-Mg molten alloy covered by a KCl-NaCl molten salt layer floating on it to prevent alloy evaporation. When tilting the cylindrical furnace, it was necessary to compute the relation between the salt and alloy volumes and the area of the liquid alloy/salt ...

Computation of Airfoils at Very Low Reynolds Numbers

D. Bichsel1, and P. Wittwer2
1HESSO, Ecole d'Ingénieurs de Genève, Geneva, Switzerland
2DPT, Université de Genève, Geneva, Switzerland

We discuss a new numerical scheme involving adaptive boundary conditions which allows to compute, at very low Reynolds numbers, drag and lift of airfoils with rough surfaces; efficiently and with great precision.As an example, we present the numerical implementation for an airfoil consisting of a line segment. The solution of the Navier-Stokes equations is singular at the leading and trailing ...

Design of heat flux microsensor assisted by COMSOL for the study of energy transfer on Si and Cu thin samples

L. Bedra, N. Semmar, A.-L. Thomann, R. Dussart, J. Mathias, and Y. Tessier
GREMI, CNRS-Université d'Orléans, Orléans, France

A commercial heat probe is used for energy transfer measurements on copper and silicon substrates. To do so, the micro sensor has to be calibrated under high vacuum (~10-7 mbar), using a homemade black body as a heat source.Although the HFM is cooled at 5 oC, the solid surface temperature is unknown as the thermal contact resistance. Thus, COMSOL simulations are also used to obtain reliable ...

Implementation of EC-NDT for in Depth Detection of Defects in Metallic Plates

M. Cacciola, S. Calcagno, D. De Carlo, F. Laganà, G. Megali, F. C. Morabito, D. Pellicanò, and M. Versaci
Department of Informatics, Mathematics, Electronics and Transportations (DIMET) - "Mediterrane" University of Reggio Calabria, Reggio Calabria, Italy

Eddy Current Non Destructive Testing is exploited to evaluate the structural integrity of metallic objects. The aim of this paper is to detect defects located in depth within the inspected object; within this framework, we studied the modelling of exciting coils useful to detect structural flaws. The simulations have been carried out by considering the movement of the coil over a structural steel ...

Modelling the Coupled Heat and Mass Transfer during Fires in Stored Biomass, Coal and Recycling Deposits

F. Ferrero
Federal Institute for Materials Research and Testing Division II.2, Berlin, Germany

It is known that in big storages of bulk materials the danger of the self-ignition is relevant (long time storages). The Consequences of uncontrolled fires include considerable CO2 emission and economical and human losses to mention a few. The understanding of this phenomena is therefore of great importance.A numerical model can be of great help in understanding such complex phenomena. In this ...

Simulation of a Micro-Analytical Device for Adsorbing Substances from a Fluid

R. Winz1, A. de los Rios Gonzalez2, E. von Lieres3, M. Schmittel2, and W. Wiechert1
1Department of Simulation, University of Siegen, Siegen, Germany
2Department of Organic Chemistry, University of Siegen, Siegen, Germany
3Institute of Biotechnology, Research Centre Jülich, Jülich, Germany

T- or Y-shaped microfluidic channels are chemical measurement devices that have become popular in recent years. Using such microdevices gives a better control of the fluid behavior and the chemical reaction kinetics, due to the small quantity of fluid.The concept of the T-Sensor as state-of-the-art is used to determine coupled processes of diffusion and reaction within a small-scaled system on a ...

Convective Movements in an Electrolyser

B. Morel1, P. Namy2, C. Belhomme1, and I. Crassous3
1Comurhex, Pierrelatte, France
2SIMTEC, Grenoble, France
3LI2C, Paris, France

Modeling electrolysers is a challenge because of the strong coupling between electrical, thermal and CFD equations. Indeed the electrical conductivity of the electrolyte varies with the temperature, which in turn depends on the heat dissipated by the Joule effect and anode over-voltage.In the present study, the fluid velocity values are computed near the electrodes using a diphasic level set ...

Quick Search