Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

COMSOL Implementation of a Multiphase Fluid Flow Model in Porous Media

M. Diaz-Viera, D. Lopez-Falcon, A. Moctezuma-Berthier, and A. Ortiz-Tapia
Instituto Mexicano del Petroleo, MĂ©xico D.F., Mexico

The aim of the present work is to implement in COMSOL Multiphysics a multiphase fluid flow model in porous media, also known in the oil reservoir engineering literature as a black oil model, using a standard finite element approach. In particular, we are interested to apply this model coupled with a multiphase, multicomponent transport model to study Enhanced Oil Recovery processes at laboratory ...

Transport, Growth, Decay and Sorption of Microorganisms and Nutrients through Porous Media: A Simulation with COMSOL

D. Lopez-Falcon, M. Diaz-Viera, and A. Ortiz-Tapia
Instituto Mexicano del Petroleo, México D.F., Mexico

Transport of microorganisms through porous media governs many phenomena in bioremediation of environmental pollution problems and microbial enhanced oil recovery. The aim of this work is to investigate the effects of some transport parameters on breakthrough curves as well as on spatial distribution of components transported through a porous medium by a fluid phase. Using COMSOL Multiphysics and ...

Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow

E. Kaufman[1], and E. Gutierrez-Miravete[2]

[1]Pratt and Whitney, East Hartford, CT, USA
[2]Rensselaer at Hartford, Hartford, CT, USA

As gas turbine temperatures and component life requirements continue to rise, it becomes increasingly important to have a good understanding of the operating temperatures of their components. The objective of this study was to explorate whether a Hiemenz flow approximation based on measured static pressures near an airfoil leading edge can provide a good estimate of the leading edge heat transfer ...

Fully Coupled Thermo-Hydro-Mechanical Modeling by COMSOL Multiphysics, with Applications in Reservoir Geomechanical Characterization

T. Freeman[1], R. Chalaturnyk[1], and I. Bogdanov[2]
[1]University of Alberta, Edmonton, AB, Canada
[2]Centre Huile Lourde Ouvert et Expérimental (CHLOE), France

Because of the complex nature of geomaterials and presence of solid and fluid within a single system, it is crucial to consider all the physics involved within the geomaterial system. A fully coupled thermo-hydromechanical model is developed. The model consists of a three-phase flow model designed as a set of coupled PDE application modes that when coupled with the Heat Transfer Module and ...

COMSOL® and MATLAB® Integration to Optimize Heat Exchangers Using Genetic Algorithms Technique

J. Muñoz[1], R. Valencia[2], and C. Nieto [3]
[1] Semillero Termodinámica y Fluidos, Universidad Pontificia Bolivariana, Medellin, Antioquia, Colombia
[2] Grupo Automática y Diseño
[3] Instituto de Energía y Termodinámica, Mechanical Engineering Faculty, Universidad Pontificia Bolivariana, Medellin, Antioquia, Colombia

Genetic Algorithms (GA) have proved to be a complete and effective approach for solving optimization problems. This article presents the integration between COMSOL® and a GA optimization tool coded in MATLAB® for the optimization of two thermal systems: a constant area fin in 2D and a concentric heat exchanger in 2D. Analysis permitted us to achieve efficiencies of up to 90%. For the ...

Mixing of Liquids in Microfluidic Devices

B. Finlayson, A. Aditya, V. Brasher, L. Dahl, H. Dinh, A. Field, J. Flynn, C. Jenssen, D. Kress, F. Ninh, A. Nordmeier, H. Song, and C. Yuen

University of Washington, Seattle, WA, USA

The mixing of liquids was characterized in thirteen different microfluidic devices. The goal was to characterize, in a uniform manner, the flow and mixing that occurred in slow, laminar flow and to present the results that allow quick designs.   The mixing of a dilute chemical in another liquid during slow, laminar flow is a particularly difficult task, but the results showed that for ...

Modeling Carbon Nanotube FET Physics in COMSOL Multiphysics®

A. Kalavagunta
Vanderbilt University, Nashville, TN, USA

Carbon nanotube FETs are generating much interest in the nanoscale electronics area. Typically subthreshold behavior in these devices has been modeled using the Laplace equation. Above threshold behavior uses self-consistent solutions to the Poisson and continuity equations. Accurate modeling of Carbon nanotube FETs needs to include quantum effects such as tunneling. Owing to the coupled nature ...

Use of COMSOL In Aerodynamic Optimization of the UNLV Solar-Powered Unmanned Aerial Vehicle

L. Dube, W. McElroy, and D. Pepper

University of Nevada, Las Vegas, Nevada, USA

We discuss the use of COMSOL Multiphysics 3.4 in the aerodynamic optimization process of the UNLV solarpowered UAV. We also address the use of COMSOL’s Multiphysics ability and how it was used within the scope of the project. In particular we highlight the development of wingtip devices, some of which are non-planar lifting surfaces, and we analyze how these changes affect the airframe ...

Numerical Demonstration of Finite Element Convergence for Lagrange Elements in COMSOL Multiphysics

M. Gobbert, and S. Yang
Department of Mathematics and Statistics, University of Maryland, Baltimore, MD, USA

The convergence order of finite elements is related to the polynomial order of the basis functions used on each element, with higher order polynomials yielding better convergence orders. However, two issues can prevent this convergence order from being achieved: the lack of regularity of the PDE solution and the poor approximation of curved boundaries by polygonal meshes. We show studies for ...

Time-Harmonic Modeling of Squirrel-Cage Induction Motors: A Circuit-Field Coupled Approach

R. Escarela-Perez[1], E. Melgoza[2], and E. Campero-Littlewood[1]

[1]Universidad Autonoma Metropolitana - Azcapotzalco, Departamento de Energia, México, D.F., Mexico
[2]Instituto Tecnologico de Morelia, Morelia, Mich., C.P., Mexico

Finite element modeling of three-phase induction machines requires the solution of coupled circuit and field equations. This work aims to solve this problem using a strong coupling approach.   This work includes circuit field coupling and proper air-gap meshing, using the AC/DC Module of COMSOL Multiphysics and SPICE. As a result, a quasi-3D model can be obtained with an accurate field ...

Quick Search

1 - 10 of 108 First | < Previous | Next > | Last