Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Highest Pulsed Magnetic Fields in Science and Technology, Assisted by Advanced Finite-Element Simulation

Thomas Herrmannsdörfer

Forschungszentrum Dresden-Rossendorf, Germany

Thomas Herrmannsdörfer got his PhD in experimental physics from the University of Bayreuth in 1994. In 1995, he received the Research Award of the Emil-Warburg-Foundation while he worked at the DFG-Graduiertenkolleg Bayreuth. From 1995 – 1998 he worked as a scientist at Hahn-Meitner-Institute (HMI) Berlin. Since 1998, he has worked at Forschungszentrum Dresden-Rossendorf ...

Simulating Hodgkin-Huxley-like Excitation using Comsol Multiphysics

J. Martinek[1,2], Stickler[2] , Reichel[1], and Rattay[2]
[1]Department of Biomedical Engineering and Environmental Management, University of Applied Sciences Technikum Wien, Vienna, Austria
[2]Institute for Analysis and Scientific Computing, Vienna University of Technology, Austria

Most simulations concerning electrical activation of human muscles are based on the modeling approach of Hodgkin and Huxley. Calculating the response of a muscle or nerve fiber membrane to an applied electrical field, needs to consider the “macroscopic”, extracellular potential distribution in the tissue surrounding the fiber, and the “microscopic”, intracellular potential ...

Mathematical Investigation and CFD Simulation of Monolith Reactors: Catalytic Combustion of Methane

M. Ghadrdan[1], and H. Mehdizadeh[2]
[1]Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
[2]Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran

Interest in the production of hydrogen from hydrocarbons has grown significantly recently. In order to achieve high surface to volume ratio with reasonable pressure drop, monolithic reactors are used. The goal of this work is to develop a two-phase (gas & solid) transient catalytic combustor model using a simplified flow field inside a single channel to test the advantages of the COMSOL ...

On Boundary Conditions for CSEM Finite Element Modeling, I

J. Park[1], T. Bjornara[1], H. Westerdahl[2], and E. Gonzalez[2]
[1]Norwegian Geotechnical Institute (NGI), Oslo, Norway
[2]StatoilHydro Research Center, Norway

In this study, we propose an absorbing boundary domain (or condition), which is really simple but still efficient for the 2.5D finite element (FE) analysis. The main application is to simulate the electromagnetic (EM) waves related to the marine controlled source electromagnetic (CSEM) method, where the EM wave propagates with extremely low frequency in the conductive media. In the near future, ...

Adaptive Control of Simulated Moving Bed Plants Using Comsol’s Simulink Interface

M. Fütterer
Institut für Automatisierungstechnik, Otto-von-Guericke Universität, Magdeburg, Germany

Preparative chromatography is an important separation method where the simulated moving bed (SMB) technology is an increasingly used separation process for binary mixtures. Several chromatographic columns are arranged in a ring where the feedings and drains are changed cyclically to maintain a continuous separation. For this reason, an adaptive controller is proposed to adjust the flow rates ...

Modeling of Respiratory Lung Motion as a Contact Problem of Elasticity Theory

R. Werner, J. Ehrhardt, and H. Handels
University Medical Center Hamburg-Eppendorf, Germany

Breathing motion is a major problem in radiotherapy of lung tumors. The development of techniques to adequately account for respiratory motion requires detailed knowledge about breathing dynamics. Thus, computer aided modeling of respiratory motion gains in importance. In this paper we present an approach to modelling a respiratory lung. Main aspects of the process of lung ventilation are ...

Simulation of the Acoustic Environment for the Manufacture of Graded Porosity Materials by Sonication

C. Torres-Sanchez, and J. R. Corney
University of Strathclyde, United Kingdom

Many materials require functionally graded cellular microstructures whose porosity is engineered to meet specific requirements of diverse applications. It has been shown in previous work that the bubble growth rate of a polymeric foam can be influenced by the surrounding acoustic environment and, once solidified, produce a solid of graded porosity. Motivated by the desire to create a flexible ...

Modelling of the Temporal Analysis of Products (TAP) Reactor with COMSOL

S. Pietrzyk[1], A. Khodakov[1], and M. Olea[2]
[1]Unite de Catalyse et de Chimie du Solide, USTL-ENSCL-EC Lille, Villeneuve d’Ascq, France
[2]School of Science and Technology, University of Teesside, Middlesbrough, UK

A TAP reactor is a fixed-bed catalytic reactor operated in pulse (transient) mode under very low pressures. It has become a very important tool in catalytic studies as it fills the material and pressure gaps existing between practical conditions and high vacuum – monocrystal techniques. A pretreated solid catalyst maintained at a desired temperature in an evacuated chamber is exposed to a ...

Plasmonic Properties of Bimetal Nanoshell Cylinders and Spheres

K. Ehrhold[1], S. Christiansen[1,2], and U. Gösele[1]
[1]Max Planck Institute of Microstructure Physics, Halle, Germany,
[2]Institute of Photonic Technology, Jena, Germany

Plasmonics is a new branch of the fascinating field of photonics and develops concepts to quench light beyond the diffraction limit and enhance electromagnetic fields. These enhancements occur in metals as localized surface plasmon polaritons (LSP) a coupling of the surface density oscillations of the electron gas to the incident light. With threedimensional nano-structures of coinage metals that ...

Symmetric Stack Model of a Molten Carbonate Fuel Cell (MCFC) with Indirect Reforming

M. Pfafferodt[1], P. Heidebrecht[2], and K. Sundmacher[1,2]
[1]Otto-von-Guericke-University, Magdeburg, Germany
[2]Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany

A model of a Molten Carbonate Fuel Cell (MCFC) stack with internal reforming is presented.  It describes the concentrations in the gas phase, the temperatures and the current densities in this highly integrated system. The differential equations, boundary conditions and the coupling equations used in the model are presented. A strategy to solve the system of partial differential ...

Quick Search