Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Thermal analysis of a spent fuel transportation cask

P. Goyal[1], V. Verma[1], R. K. Singh[1], and A. K. Ghosh[1]
[1]Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India

Spent fuel transportation casks are required to meet among others (test conditions), the regulatory thermal test conditions in order to demonstrate their ability to withstand specified accidental fire conditions during transport. This paper describes the transient thermal analysis performed with the above intention for a transportation cask. The analysis was carried out using COMSOL Multiphysics ...

Accuracy Assessment of The Linear Induction Motor Performance using Adaptive FEM

M. Manna[1], S. Marwaha[1], and C. Vasudeva[1]
[1] Department of Electrical & Instrumentation Engineering, Sant Longowal Institute of Engineering and Technology , Longowal (Deemed University), Punjab, India

The majority of electrical machines are designed to produce the rotary motion, there by exploiting the blessing of circularity which man has enjoyed since the discovery of the wheel. Electromagnetic forces may also be employed to produce the linear motion resulting in linear motion electrical machines. The performance of a high speed LIM is severely degraded by "End Effects". The paper provides ...

Thermo-mechanical Analysis of Steam Generator Bottom Tube Sheet of Steam Generator Test Facility

S. P. Ruhela[1], V. Vinod[1], S. Kishore[1], B. K. Sreedhar[1], I. B. Noushad[1], B. Krishnakumar[1], P. Kalyanasundaram[1], and G. Vaidyanathan[1]
[1] Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India

  Steam Generator Test Facility (SGTF) is set up in IGCAR to optimize the design of Steam Generators (SG) for Fast Breeder Reactors. In the SG of SGTF heat exchange takes place from sodium which enters at 525 ºC and leaves at 355 ºC temperature to the water/steam which enters at 235 ºC and leaves at 493 ºC. To reduce the steady state differential temperature and thermal shock during ...

Microwave Interstitial Tumor Ablation: New Modality for Treatment of Liver Cancer

S. Maini[1] , A. Marwaha[1] , and S. Marwaha[1]

[1] Department of Electrical & Instrumentation Engineering, SLIET , Longowal (Deemed University), Punjab

Hyperthermia is newly back in the interest of both, clinical and research oncologists, because of its properties to directly produce permanent damages of the treated tumors and to elicit important immunological responses against cancer cells by changing their immunogenicity.  Microwave ablation is used in the treatment of primary and secondary tumors of the liver.  Microwave antennas ...

Optimization of Flow Distribution in the Feed Sparger of a Steam Drum

P. Goyal[1], A. Dutta[1], and A. K. Ghosh[1]
[1] Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, India

Steam drums of a nuclear power plant separate steam from the steam water mixture and sub cooled incoming feed water returns to the reactor. The entire feed water flow is delivered to the steam drum through the feed water sparger. The feed water sparger is provided with number of inverted ‘j’ type lateral tubes to  distribute the feed water in the drum for proper mixing with the separated ...

3D-Simulation of Action Potential Propagation in a Squid Giant Axon

R. Appali[1], S. Petersen[1], J. Gimsa[2], and U. Rienen[1]
[1] Institute of General Electrical Engineering, Chair of Electromagnetic Field Theory, University of Rostock, Germany
[2] Institute of Biology, Chair of Biophysics, University of Rostock, Germany

Study of neurons plays a key role in the fields of basic and medical research aiming at the development of electrically active implants. The Fitzhugh-Nagumo equations are used to model and simulate the spike generation and propagation in a squid giant axon using COMSOL Multiphysics® 3.5a Software. It is shown that the Fitzhugh-Nagumo equations allow for a geometrical explanation of important ...

COMSOL® Implementation of a Viscoelastic Model with Cure-Temperature-Time Superposition for Predicting Cure Stresses and Springback in a Thermoset Resistant

B. Patham[1]
[1] General Motors Global Research and Development, India Science Lab, GM Technical Centre India.

Multi-physics simulations of the evolution of cure induced stresses in a viscoelastic thermoset polymeric resin are presented. The viscoelastic material model is implemented with a relaxation spectrum with 34 relaxation time constants. The trends in viscoelastic stresses at different degrees of cure and temperatures are compared and contrasted with an equivalent cure–dependent (but ...

Efficient Heat Management Technique for Electronic Display Device

U. Shukla[1], and D. Gupta[1]
[1] Department of Materials and Metallurgical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, India

One of the major challenges faced by the semiconductor industry is that electronic circuits produce a lot of heat energy during their operation. And with the current scenario where the gates are packed so much close together, then the problem of heat generation has become extremely significant. So we are working towards the efficient heat management and dissipation solution for the heat generated ...

Finite Element Method as an aid to machine design: A Computational Tool

C. Gupta[1], S. Marwaha[1], and M. Manna[1]
[1] Department of Electrical & Instrumentation Engineering, SLIET , Longowal (Deemed University), Punjab, India

The paper provides an overview of the state of art in computational electromagnetic. There are three major ar eas like Design, optimization and material selection for the electric machines. The computational tool based on finite elements is very useful and powerful field simulation techniques available to assist in the design and performance prediction of electric machines. But the complexity in ...

Local Electroporation of Single Adherent Cells by Micro-Structured Needle Electrodes

K. K. Sriperumbudur[1], P. J. Koester[1], M. Stubbe[1], C. Tautorat[1], J. Held[2], W. Baumann[1], and J. Gimsa[1]
[1] University of Rostock, Chair of Biophysics, Gertrudenstr. 11a, 18057 Rostock, Germany
[2] Microsystem Material Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, Germany

In spite of its low throughput, Patch-Clamp is the established method for intracellular measurements of the transmembrane potential. To address this problem, we have developed new biosensor-chips with micro-structured needle electrodes (MNEs). MNE-penetration of single cells growing on the MNE-tips leads to a situation comparable to the whole-cell mode in classical Patch Clamp. MNE-penetration ...

Quick Search

1 - 10 of 33 First | < Previous | Next > | Last