Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Finite Element Method as an aid to machine design: A Computational Tool

C. Gupta[1], S. Marwaha[1], and M. Manna[1]
[1] Department of Electrical & Instrumentation Engineering, SLIET , Longowal (Deemed University), Punjab, India

The paper provides an overview of the state of art in computational electromagnetic. There are three major ar eas like Design, optimization and material selection for the electric machines. The computational tool based on finite elements is very useful and powerful field simulation techniques available to assist in the design and performance prediction of electric machines. But the complexity in ...

Modelling and Simulation of a Single Particle in Laminar Flow Regime of a Newtonian Liquid

D. Jamnani[1]

[1] Alpha Project Service, Vadodara, Gujarat, India

The interaction of a single particle in straight rectangular channel in laminar flow is modelled explicitly using the set of Navier Stokes equation for the fluid motion and Newton momentum equation for the particle motion in Cartesian coordinate system. The evaluation of integral force acting on the particle along with the behaviour of streamlines as a function of Reynolds number ReP < 120 is ...

Accuracy Assessment of The Linear Induction Motor Performance using Adaptive FEM

M. Manna[1], S. Marwaha[1], and C. Vasudeva[1]
[1] Department of Electrical & Instrumentation Engineering, Sant Longowal Institute of Engineering and Technology , Longowal (Deemed University), Punjab, India

The majority of electrical machines are designed to produce the rotary motion, there by exploiting the blessing of circularity which man has enjoyed since the discovery of the wheel. Electromagnetic forces may also be employed to produce the linear motion resulting in linear motion electrical machines. The performance of a high speed LIM is severely degraded by "End Effects". The paper provides ...

Sensitivity Estimation of Permanent Magnet Flowmeter

V. Sharma[1], S. K. Dash[1], G. Vijaykumar[1], B. K. Nashine[1], B. Krishnakumar[1], P. Kalyanasundaram[1], and G. Vaidyanathan[1]
[1]Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India

Permanent Magnet Flowmeter (PMFM) is a non invasive device, which is used to measure the flow of electricallyconducting sodium in Fast Breeder Reactor Circuits. PMFM works on the principle of generation of motional EMF by magnetic forces exerted on the charges in a moving conductor. In this paper modeling of PMFM with different pipe sizes is done to predict the flowmeter output for a given ...

Simulation of AC Loss in High Temperature Superconducting Cable using COMSOL Multiphysics

G. Konar[1], R. K. Mandal[1], A. Chakrabarty[1], J. Das[1], and N. Chakraborty[1]
[1]Power Engineering Department, Jadavpur University, Kolkata, West Bengal, India

In this paper simulation of the alternating current loss (AC loss) in a high temperature superconducting tape and a HTS cable having 4 layers of polygon conductors using COMSOL Multiphysics software has been reported. The simulation results for the single rectangular tape are verified with the Norris equation for a HTS tape. The effect of increased number of layers on AC loss is also observed ...

COMSOL® Implementation of a Viscoelastic Model with Cure-Temperature-Time Superposition for Predicting Cure Stresses and Springback in a Thermoset Resistant

B. Patham[1]
[1] General Motors Global Research and Development, India Science Lab, GM Technical Centre India.

Multi-physics simulations of the evolution of cure induced stresses in a viscoelastic thermoset polymeric resin are presented. The viscoelastic material model is implemented with a relaxation spectrum with 34 relaxation time constants. The trends in viscoelastic stresses at different degrees of cure and temperatures are compared and contrasted with an equivalent cure–dependent (but ...

Design of Arrayed Micro-Structures to get Super-Hydrophobic Surface for Single Droplet and Bulk Flow Conditions

A. Mall[1], P. R. Jelia[1], A. Agrawal[1], R. K. Singh[1], and S. S. Joshi[1]

[1] Department of Mechanical Engineering, Indian Institute of Technology Bombay, Maharashtra, India

Surfaces with water contact angle greater than 150º are super-hydrophobic in nature and possess extraordinary water repelling properties. Various researches on wettability of textured surfaces in recent years have shown that texturing surfaces with micron-sized and nanosized patterns improves their hydrophobicity to a great extent. This report aims at optimizing the dimensions of ...

Coupled Magnetic-Structural Finite Element Analysis

S. V. Kulkarni[1], and S. Alapati[1]
[1] Department of Electrical Engineering, Indian Institute of Technology Bombay, Maharashtra, India

In general, there is a wide range of applications requiring coupled electromagneticstructural analysis. In this paper, two of such coupled problems have been analyzed. The first one is a transient analysis of Electromagnetic Forming process and the other problem is a deformation analysis of a coil in a static electromagnetic field. These problems are simulated in COMSOL using AC/DC module and ...

Finite Element Modeling and Simulation of Electromagnetic Forces in Electromagnetic Forming Processes: Case studies using COMSOL Multiphysics

A. N. Kumar[1], and M. Nabi[1]
[1] Department of Electrical Engineering, Indian Institute of Technology Delhi, India

Electromagnetic Forming (EMF) is a promising and relatively new manufacturing technology having significant advantages over conventional forming processes. A primary characteristic of this process is use of noncontact electromagnetic forces to achieve forming and shaping  of various metal work pieces. Mechanically, this is a high-strain rate forming process. From the modeling and simulation ...

Microwave Interstitial Tumor Ablation: New Modality for Treatment of Liver Cancer

S. Maini[1] , A. Marwaha[1] , and S. Marwaha[1]

[1] Department of Electrical & Instrumentation Engineering, SLIET , Longowal (Deemed University), Punjab

Hyperthermia is newly back in the interest of both, clinical and research oncologists, because of its properties to directly produce permanent damages of the treated tumors and to elicit important immunological responses against cancer cells by changing their immunogenicity.  Microwave ablation is used in the treatment of primary and secondary tumors of the liver.  Microwave antennas ...

Quick Search

1 - 10 of 33 First | < Previous | Next > | Last