Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Deep Desulfurization of Diesel Using a Single-Phase Micro-Reactor

G. Jovonavic[1], J. Jones[1], and A. Yokochi[1]
[1]School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA

This paper describes the benefits of computational fluid dynamics in the development of a microreactor used in the desulfurization of aromatic compounds. It is crucial to verify diffusion and extinction coefficients to ensure accurate simulation results prior to experiments. COMSOL Multiphysics was used to model the behavior of all of the possible species present and reactions that may occur.

Modeling Two-Phase Electrophoresis

W. Clark[1], and M. Lindblad[1]
[1]Chemical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts, USA

Two-phase electrophoresis is a separation method that combines aqueous two-phase partitioning with electrophoresis and has promise for large scale recovery of biological products. Aqueous two-phase systems formed by adding two polymers, like dextran and polyethylene glycol, to water provide some separation of dissolved species due to differences in solubility of solutes between the phases. COMSOL ...

Coupled Models of Lithospheric Flexure and Magma Chamber Pressurization at Large Volcanoes on Venus

G. Galgana[1], P. McGovern[2], and E. Grosfils[2]

[1]Lunar and Planetary Institute, Houston, Texas, USA
[2]Pomona College, Claremont, California, USA

We present an implementation of the Structural Mechanics module of COMSOL Multiphysics to model the state of stress associated with the emplacement of large volcanic edifices on the surface of a planet. These finite element models capture two essential physical processes: (1) Elastic flexure of the lithosphere beneath the edifice load, and (2) Pressurization of a magma-filled chamber that serves ...

An Efficient Finite Element Analysis on an RF Structure Used to Evaluate the Effect of Microwave Radiation on Uveal Melanoma Cells

A. Dulipovici[1], D. Roman[2], I. Stiharu[2], and V. Nerguizian[1]

[1]École de technologie supérieure, Montreal, Quebec, Canada
[2]Concordia University, Montreal, Quebec, Canada

The use of Microwave/RF energy on cancer cells is explored for tumor ablation using medium power level ranging between a few Watts to about 50 Watts. In this research, low power levels, less than 100 mWatt, are used to evaluate the effect of this energy on Uveal melanoma cells by proliferation tests. The COMSOL simulation of the RF structure used to evaluate the radiation energy on ...

Control of Preheating Process of Casting Die as Distributed Parameter System

C. Belavý[1], G. Hulkó[1], K. Ondrejkovic[1], and P. Zajícek[1]
[1]Institute of Automation, Measurement and Applied Informatics, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic

In the paper distributed parameter system models in the form of lumped-input/distributed-output systems are introduced and modeling of temperature fields of the die in the benchmark casting plant is presented. Temperature fields were modeled and studied using a finite element method based software package COMSOL Multiphysics and numerical models in the form of a lumped-input/distributed-output ...

Simulation of Convection in Water Phantom Induced by Periodic Radiation Heating

H.H. Chen-Mayer[1], and R. Tosh[1]
[1]Ionizing Radiation Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Water calorimetry is employed to establish a primary reference standard for radiation dosimetry by measuring the temperature rises in a water phantom (a cube of about 30 cm x 30 cm x 30 cm) subjected to a beam of ionizing radiation.  We use COMSOL Multiphysics to model the system using the Heat Transfer module and the Incompressible Navier-Stokes module with a geometry of 2D-axial ...

Reliability Evaluation for Static Chamber Method at Landfill Sites

H. Ishimori[1], K. Endo[1], and M. Yamada[1]
[1]National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

In this study, COMSOL Multiphysics was used for the reliability evaluation for static chamber method at landfill sites. Static chamber method, which measures landfill gas emission fluxes, is widely used at landfill sites for the monitoring of greenhouse gas emission such as methane and carbon dioxide. The accuracy and the reliability of static chamber method are dependent on the measuring ...

The Effect of a Correlated Surface Roughness and Convection on Heat Conduction

A.F. Emery[1]
[1]Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA

Heat conduction through a slab, 0 ≤ x ≤ W is one dimensional. However, if one of the edges, say x=0, is rough the conduction will be two dimensional. The two dimensionality varies with the correlation length with a maximum at a length approximately 10% of the slab width. The maximum percentage standard deviation of the flux is of the order of 3 time that of the roughness. Monte ...

Wall Effects in Convective Heat Transfer from a Sphere to Power Law Fluids in Tubes

D. Song[1], R. Gupta[1], and Chhabra[2]

[1]West Virginia University, Morgantown, West Virginia, USA
[2]Indian Institute of Technology, Kanpur, India

Heat transfer from a sphere having a uniform temperature and falling axially in a cylindrical tube filled with an incompressible power-law liquid is numerically investigated. The governing equations for simultaneous flow around a confined sphere and heat transfer to power-law fluids were solved numerically using COMSOL Multiphysics. It was found that the wall effects on the mean Nusselt number ...

Computational Modeling of Magnetorheological Elastomers Using Soft and Hard Magnetic Particles

J. Biggs[1], P. VonLockette[1], and S. Lofland[1]
[1]Rowan University, Glassboro, New Jersey

Magnetorheological Elastomers (MREs) are a composite that consist of magnetic micrometer sized particles suspended within rubber matrix filler. By placing this material within an external magnetic field during the rubber curing process, the poles of the particles are forced to align and form chains of particles within the matrix. These chains cause the MRE to change its stiffness properties when ...

Quick Search