Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysical Modeling of Calcium Carbonate Transportation in UV Disinfection in Water Treatment

E. R. Blatchley[1], and B.Z. Sun[1]
[1]Department of Civil Engineering, Purdue University, West Lafayette, IN, USA

Mineral precipitation on to the quartz surface of the lamp jackets in UV disinfection process (fouling) has been recognized as a major problem for UV radiation delivery during disinfection operation. Fouling behavior was observed to be induced thermally and influenced by hydraulic character of the UV disinfection configuration. Fouling process involves momentum, heat, and mass transport within ...

Simulation of the Turbulent Flow in HEV Static Mixers : Mixing of Ethanol with Gasoline

A. Eissa[1]
[1]Department of Chemical Engineering, Cairo University, Giza, Egypt

Mixing is a typical unit operation that occurs almost in all chemical industries. Static – alternatively termed motionless – mixers are being widely used due to their low power consumption, low capital investment, minimal maintenance costs and versatility. The traditional helical mixing element is mainly used for in-line blending under laminar and transitional flow conditions. The ...

Multi-Scale Modelling of Catalytic Microreactors

B. Hari[1] and C. Theodoropoulos[1]
[1]The University of Manchester, School of Chemical Engineering and Analytical Science, Manchester, UK

Microreactors are important alternative to conventional reactors in chemistry, chemical, pharmaceutical and semiconductor industries due to their operation characteristics such as increased mass and heat transfer, uniform flow, safety, high throughput through array configurations, smaller plant size and lower cost of production. Models for such reactors need to be able to describe both the ...

Explicit Dosimetry for Photodynamic Therapy; Singlet Oxygen Modeling based on Finite-Element Method

Ken Kang-Hsin Wang[1], and Timothy C. Zhu[1]
[1]Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent during type-II photodynamic therapy (PDT). The production of 1O2involves the complex reactions among cancer agent, oxygen molecule, and treatment laser light. The light propagation in tumor tissue is described by the diffusion equation. In this work, an optimization routine is developed to fit the [1O2]rx profile to the simulated necrosis ...

Optimization of a Thermal Actuator for Low Power/Low Cost Applications

R. Zúñiga-Quesada[1], M. Vílchez-Monge[1], P. Vega-Castillo[1]
[1]Instituto Tecnológico de Costa Rica, Cartago, Costa Rica

This work describes the study of a thermal actuator and modifications to the materials employed in order to decrease power consumption and implementation costs. For this study, we worked on improving the thermal actuator described in the work of T. Ebefors. The criteria for choosing the new materials were lower power consumption, commercial availability, and ease processing. The thermal actuator ...

Reliability Evaluation for Static Chamber Method at Landfill Sites

H. Ishimori[1], K. Endo[1], and M. Yamada[1]
[1]National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

In this study, COMSOL Multiphysics was used for the reliability evaluation for static chamber method at landfill sites. Static chamber method, which measures landfill gas emission fluxes, is widely used at landfill sites for the monitoring of greenhouse gas emission such as methane and carbon dioxide. The accuracy and the reliability of static chamber method are dependent on the measuring ...

A Non-isothermal Modeling of a Polymer Electrolyte Membrane Fuel Cell

H. Shin[1]

[1]Department of Mechanical Engineering, University of Michigan – Ann Arbor, Michigan, USA

Polymer electrolyte membrane (PEM) fuel cells have attracted attention as an alternative power source in various applications such as vehicles, portable supplies, and stationary power systems. A non-isothermal PEM fuel model is developed and simulated by using COMSOL Multiphysics. Although PEM fuel cells have been expected to be extensively used as an alternative power source, there have been ...

Finite Element Modeling a Redox-Enzyme-Based Electrochemical Biosensor

Y. Huang[1], and A. Mason[1]
[1]Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA

This paper describes the modeling of an electrochemical biosensor embedded in a microfluidic channel to determine the concentration of a target biomolecule. The total amount of analyte in the sample can be calculated by integrating the analyte concentration over the duration of the peak current. The biosensor is constructed by immobilizing redox-enzyme on an interdigitated array (IDA) electrode ...

Modeling the Collimator-Detector Scattering Using Stochastic Differential Equations and COMSOL

A. Jeremic[1], T. Farncombe[2], S. Liu[2], and Y. Abdul-Rehman[1]
[1]Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
[2]Department of Radiology, McMaster University, Hamilton, Ontario, Canada

Single photon emission computed tomography (SPECT) is a nuclear medicine imaging technique that uses gamma rays. It has been especially useful for bone scans, cardiac perfusion imaging, tumor scans and brain imaging. The main advantage of SPECT imaging is that it can target particular tissue receptors allowing one to focus on the imaging of the diseased tissue. In most cases Monte Carlo ...

Finite Element Analysis of an Enzymatic Biofuel Cell: The Orientations of a chip inside a blood artery

C. Wang[1], Y. Parikh[1], Y. Song[1], and J. Yang[1]
[1]Mechanical & Materials Science Engineering, Florida International University, Miami, Florida, USA

Output performance of an implantable enzymatic biofuel cell (EBFC) with three- dimensional highly dense micro-electrode arrays has been simulated with a finite element analysis approach. The purpose of this research is to optimize the orientation of this EBFC chip inside a blood artery such that the mass transport of glucose around all the micro-electrodes can be improved and hence output ...

Quick Search