Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling a 3D Eddy Current Problem Using the Weak Formulation of the Convective A-phi Steady State Method

J. Bird[1]

[1]University of North Carolina, Charlotte, North Carolina, USA

A 3D model of a magnetic rotor both rotating and translationally moving at high-speed over a conductive guideway is modeled in steady-state using the convective A*-Φ formulation. The presence of the magnetic rotor (source field) is incorporated into the formulation via the boundary conditions. This type of problem is difficult to model using existing commercial packaged electromagnetic ...

Numerical and Experimental Study of Flow, Heat Transfer and Concentration in a Scaled-up Fuel Cell Anode Channel Model

J. C. Torchia-Nüñez[1], and J.G. Cervantes-de-Gortari[1]

[1]Department of Thermal Engineering, National University of Mexico, UNAM, Mexico City, Mexico

Flow, concentration and temperature fields are studied with numerical and experimental methods inside a scaled-up fuel cell anode channel model. The low aspect ratio channel has a porous medium as the inferior wall where a mixing of different pH solutions occurs. Chromatic change of phenolphthalein is used to visualize concentration field and Particle Image Velocimetry (PIV) is used to visualize ...

Modeling Hydrogen Permeation through a Thin TiO2 Film Deposited on Pd

Z. Qin[1], Y. Zeng[1], and D.W. Shoesmith[1]

[1]The University of Western Ontario, London, Ontario, Canada

Models that describe hydrogen permeation through a thin TiO2 film deposited on Pd have been developed based on a mass-balance equation consisting of diffusion, reversible hydrogen absorption/desorption, and irreversible hydrogen trapping. These models are solved by the finite element method using COMSOL Multiphysics. By comparing model simulations with experimental permeation curves, values of ...

An Efficient Finite Element Analysis on an RF Structure Used to Evaluate the Effect of Microwave Radiation on Uveal Melanoma Cells

A. Dulipovici[1], D. Roman[2], I. Stiharu[2], and V. Nerguizian[1]

[1]École de technologie supérieure, Montreal, Quebec, Canada
[2]Concordia University, Montreal, Quebec, Canada

The use of Microwave/RF energy on cancer cells is explored for tumor ablation using medium power level ranging between a few Watts to about 50 Watts. In this research, low power levels, less than 100 mWatt, are used to evaluate the effect of this energy on Uveal melanoma cells by proliferation tests. The COMSOL simulation of the RF structure used to evaluate the radiation energy on ...

Flow and Mixing in the Liquid between Bubbles

B. Finlayson[1]
[1]Department of Chemical Engineering, University of Washington, Seattle, Washington, USA

Mixing is characterized in liquids moving between bubbles when the bubbles are moving down a microfluidic channel. The shape is assumed based on fluid mechanical arguments and experimental observations, and the mixing is characterized for a variety of situations in two and three-dimensions. In COMSOL Multiphysics, an integration coupling variable was used by solving the problem in two dimensions ...

Two-dimensional Analysis of Triple Coupled Physics of Structural Mechanics, Diffusion and Heat Transfer in a Gas Pipe

P. Lee-Sullivan[1], and M. Haghighi-Yazdi[1]
[1]Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada

In this study, a 2-D model has been built using COMSOL Multiphysics® to analyze a triple coupled physics problem involving simultaneous gas diffusion, heat transfer, and structural mechanics in a pipe due to the flow of high-pressure carbon dioxide. The problem geometry and boundary conditions were based on the analysis by Rambert et al. who have published the most advanced modeling work in ...

Magneto-hydrodynamic Flow in Electrolyte Solutions

M. Qin[1], and H. Bau[1]
[1]Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Pennsylvania, USA

The paper presents and compares two models for simulating magneto-hydrodynamic flow of RedOx electrolyte in a conduit patterned with circular pillars. The first model solves the coupled Nernst-Planck and Navier-Stokes equations subjected to Butler-Volmer electrode kinetics and provides detailed information on ions’ concentrations. The second model treats the electrolyte as a conductor, and ...

Design and Optimization of an All Optically Driven Phase Correction MEMS Deformable Mirror Device using Finite Element Analysis

V. Mathur[1], K. Anglin[1], V.S. Prasher[1], K. Termkoa[1], S.R. Vangala[1], X. Qian[1], J. Sherwood[1], W.D. Goodhue[1], B. Haji-Saeed[2], and J. Khoury[2]

[1]Photonics Center, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
[2]Air Force Research Laboratory/Sensors Directorate, Hanscom Air Force Base, Massachusetts, USA

Optically addressable MEMS mirrors are required for future high density adaptive optics array systems. We have demonstrated a novel technique of achieving this by actuating low stress Silicon Nitride micro mirrors via cascaded wafer bonded Gallium Arsenide photo detectors on Gallium Phosphide. In the work reported here, we discuss the key design parameters of the device, and present the finite ...

Modeling of Shrinkage Behavior in Cement Paste Using Thermal-structural Interaction

T. Chen[1], and P.G. Ifju[1]

[1]University of Florida, Gainesville, Florida, USA

This paper describes using thermal-structural interaction to model the shrinkage behavior in cement paste under drying. An inverse method of combining the finite element analysis and the least-squares method is implemented to fit experimentally determined shrinkage in order to obtain material properties from the complex geometry used in the tests. The finite element model is created using COMSOL ...

Three-Dimensional Simulation of Signal Generation in Wide-Bandgap Semiconductor Radiation Detectors

J. E. Toney[1]
[1]Pennsylvania State University Electro-Optics Center, Freeport, Pennsylvania, USA

We demonstrate the use of Comsol Multiphysics with Matlab to model signal generation in wide-bandgap semiconductor radiation detectors. A quasi-hemispherical detector design is compared with a simple, planar detector. Results show that the quasi-hemispherical design can simply and effectively compensate for the poor hole transport of most compound semiconductor materials.

Quick Search