Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Designing B-field Coils from the Inside-Out

C.B. Crawford[1], Y. Shin[1], and G. Porter[1]
[1]Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky, USA

Traditionally the design cycle for magnetic fields involves guessing at a reasonable conductor / magnetic material configuration, using FEA software to calculate the resulting field, modifying the configuration, and iterating to produce the desired field. Our method involved solving the classical Laplace equation on regions with imposed boundary conditions, which was implemented straightforwardly ...

COMSOL Derived Universal Scaling Model For Low Reynolds Number Viscous Flow Through Microfabricated Pillars – Applications to Heat Pipe Technology

N. Srivastava[1], and C.D. Meinhart[1]
[1]Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara California, USA

Cooling of high-power density electronic devices remains a challenge. Microfluidic heat-pipes with the potential of achieving ultra-high thermal conductivities offer a low-cost technology for cooling electronics. To achieve high thermal conductivity, it is critical to maximize the rate of liquid transport inside the heat pipe. We propose a novel array of microfabricated pillars to maximize liquid ...

The Effect of a Correlated Surface Roughness and Convection on Heat Conduction

A.F. Emery[1]
[1]Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA

Heat conduction through a slab, 0 ≤ x ≤ W is one dimensional. However, if one of the edges, say x=0, is rough the conduction will be two dimensional. The two dimensionality varies with the correlation length with a maximum at a length approximately 10% of the slab width. The maximum percentage standard deviation of the flux is of the order of 3 time that of the roughness. Monte ...

Quasi-TEM Analysis of Multiconductor Transmission Lines Embedded in Layered Dielectric Region

S.M. Musa[1], and M.N.O. Sadiku[1]
[1]Prairie View A&M University Networking Academy, Prairie View, Texas, USA

This paper presents the quasi-TEM two-dimensional (2D) approach for the analysis of multiconductor transmission lines interconnect in single and two-layered dielectric region using the finite element method (FEM). FEM is especially suitable and effective for the computation of electromagnetic fields in strongly inhomogeneous media. We illustrate that FEM is as suitable and effective as other ...

FE Modeling of Surfaces with Realistic 3D Roughness: Roughness Effects in Optics of Plasmonic Nanoantennas

J. Borneman[1], A. Kildishev[1], K. Chen[1], and V. Drachev[1]

[1]School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA

COMSOL Multiphysics has been widely used to model the near and far-field electromagnetics (specifically, transmission and reflection spectra) of gold and silver nanoantenna arrays. We use a moving 3D mesh, thus preserving the DOF number and simply morphing the structure of the mesh to accommodate the moving boundary. The electromagnetics model consist of four multiphysics models, two ...

Stochastic Modeling of Biological Systems – Ranking the Model Parameters of the Human Vocal Folds

D. Cook[1]
[1]New York University, New York, USA

Computational models of biological systems are becoming more and more common in medical research areas. Evidence of this can be found by examining the number of articles containing the term “finite element” in the expansive National Institutes of Health (NIH) digital research archive PubMed. Numerical modeling of biological systems allows the execution of “computational ...

Bending of a Stented Atherosclerotic Artery

H.C. Wong[1], K.N. Cho[1], and W.C. Tang[1]

[1]Department of Biomedical Engineering, University of California, Irvine, California, USA

Atherosclerosis causes the deposition of plaque on the inner walls of arteries, which leads to restricted blood flow. Using the balloon angioplasty procedure, stents can be inserted and expanded in the atherosclerotic artery. We used COMSOL Multiphysics Structural Mechanics, Solid Stress-Strain module to perform static, large deformation analyses. Our results show that lower stent stresses were ...

Control of Preheating Process of Casting Die as Distributed Parameter System

C. Belavý[1], G. Hulkó[1], K. Ondrejkovic[1], and P. Zajícek[1]
[1]Institute of Automation, Measurement and Applied Informatics, Faculty of Mechanical Engineering, Slovak University of Technology in Bratislava, Bratislava, Slovak Republic

In the paper distributed parameter system models in the form of lumped-input/distributed-output systems are introduced and modeling of temperature fields of the die in the benchmark casting plant is presented. Temperature fields were modeled and studied using a finite element method based software package COMSOL Multiphysics and numerical models in the form of a lumped-input/distributed-output ...

Flow and Mixing in the Liquid between Bubbles

B. Finlayson[1]
[1]Department of Chemical Engineering, University of Washington, Seattle, Washington, USA

Mixing is characterized in liquids moving between bubbles when the bubbles are moving down a microfluidic channel. The shape is assumed based on fluid mechanical arguments and experimental observations, and the mixing is characterized for a variety of situations in two and three-dimensions. In COMSOL Multiphysics, an integration coupling variable was used by solving the problem in two dimensions ...

COMSOL in the Academic Environment at USNA

K. Mcilhany[1], and R. Malek-Madani[2]
[1]Department of Physics U. S. Naval Academy, Annapolis, Maryland, USA
[2]Department of Mathematics, U. S. Naval Academy, Annapolis, Maryland, USA

The U.S. Naval Academy has used COMSOL as a research tool for many years. Academic usage of COMSOL for student use has only begun in the last five years. Student involvement comes in four types, course-wide usage, focused course related work, student projects and semester-long research projects. A summary of how COMSOL has been successfully used at USNA will be given, showing examples of ...

Quick Search