Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Rechargeable Battery for Hybrid Diesel-Electric Locomotive

Michael A. Vallance
Team Leader, GE Global Research

Over time, rechargeable batteries degrade and eventually stop working. You see some combination of declining capacity, rapid self-discharge, and reduced power. Degradation mode depends on battery design, but also on the application. Often, multiple physical processes contribute to degradation. In the laboratory, you can measure performance degradation. You can dissect the battery to discover ...

Model of a Filament Assisted CVD Reactor

J. Brcka[1]

[1]TEL US Holdings, Inc., Technology Development Center, Albany, New York, USA

In this presentation we are dealing with the computational fluid model of a Filament Assisted Chemical Vapor Deposition (FACVD) reactor. Proposed strategy in this study involved several steps: (a) development a computational model for FACVD process capable to describe and obtain with reasonable accuracy all relevant phenomena occurring in the reaction chamber; (b) validation the computational ...

Modeling Hydrogen Permeation through a Thin TiO2 Film Deposited on Pd

Z. Qin[1], Y. Zeng[1], and D.W. Shoesmith[1]

[1]The University of Western Ontario, London, Ontario, Canada

Models that describe hydrogen permeation through a thin TiO2 film deposited on Pd have been developed based on a mass-balance equation consisting of diffusion, reversible hydrogen absorption/desorption, and irreversible hydrogen trapping. These models are solved by the finite element method using COMSOL Multiphysics. By comparing model simulations with experimental permeation curves, values of ...

Modeling Flow of Magnetorheological Fluid through a Micro-channel

N.M. Bruno[1], C. Ciocanel[1] and A. Kipple[2]
[1]Department of Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona, USA
[2]Dept. of Electrical Engineering and Computer Sciences, Northern Arizona University, Flagstaff, Arizona, USA

This paper presents the approach taken through the utilization of COMSOL Multiphysics 3.5a, to develop a model that simulates the flow of a magnetorheological (MR) fluid through a micro-channel. The model was developed as an aid in the analysis of a micropump that produces flow by means of displacement of a MR fluid slug within a microchannel.

Periodic Near-field Enhancement on Metal-Dielectric Interfacial Gratings at Optimized Azimuthal Orientation

M. Csete[1,2], X. Hu[1], A. Sipos[2], A. Szalai[2], A. Mathesz[2], and K. Berggren[1]

[1]Research Laboratory of Electronics, Nanostructures Laboratory, Massachusetts Institute of Technology, Massachusetts, USA
[2]Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary

The effect of plasmon-wavelength scaled gratings on the surface plasmon resonance is studied experimentally and theoretically. The model samples are multi-layers containing laser fabricated gratings at bimetal-polymer interfaces. Dual-angle dependent surface plasmon resonance measurements are performed illuminating the samples by monochromatic light in Kretschmann arrangement. The ...

Using Microwaves for Extracting Water From the Moon

Edwin Ethridge
Senior Materials Scientist, NASA Marshall Space Flight Center

A scientific hypothesis states that cryogenic trapped water is just under the surface of lunar soil at the poles in permanently shadowed craters. Microwave energy can be used to efficiently extract this water from permafrost. COMSOL permits calculation of the heating of simulated lunar soil using measured temperature dependent dielectric properties. Calculations at different microwave ...

Rapid Prototyping of Biosensing Surface Plasmon Resonance Devices using COMSOL & Matlab software

J.J. Dubowski[1], and D.Carrier[1]
[1]Department of Electrical and Computer Engineering, Université de Sherbrooke, Quebec, Canada

We present a Finite Element Method simulation procedure that allows rapid development of prototype devices comprising novel self-referenced interference SPR (surface plasmon resonance) biosensing microstructures. The procedure takes advantage of  COMSOL Multiphysics and MATLAB software and their bi-directional link. The simulation is made using COMSOL RF Module, 2D harmonic propagation ...

Modeling the chloride-induced corrosion initiation of steel rebar in concrete

P. Ghods[1], K. Karadakis[1], O. B. Isgor[1], and G. McRae[1]
[1]Carleton University, Ottawa, Ontario, Canada

Corrosion of rebar in concrete is one of the most prominent durability problems in reinforced concrete, especially where de-icing or seawater salts come into contact with the structures. Previous electrochemical and microscopic investigations have shown that local crevices between the mill scale and the underlying steel surface accelerate the corrosion initiation of rebar in concrete. Steel ...

The Use of CFD Simulations in Learning Fluid Mechanics at the Undergraduate Level

Marc K. Smith
Professor of Mechanical Engineering, Georgia Institute of Technology

Simple, accurate CFD simulations using COMSOL Multiphysics are used in a senior-level undergraduate course as a means to explore a number of fluid flows with the intent of developing a deep understanding of the underlying fluid mechanical mechanisms involved in the flows. Students also learn about the finite element method, how to properly pose the underlying mathematical model for the fluid ...

Coupled Structural and Magnetic Models: Linear Magnetostriction in COMSOL

J. Slaughter[1]
[1]Etrema Products, Inc., Ames, Iowa, USA

Accurate modeling of magnetostrictive materials and devices requires coupling of electrical, magnetic, mechanical, and possibly acoustic domains. There are relatively few finite  element software packages that include all these physical models and even fewer that include magnetostrictive models. Comsol Multiphysics was used to create linear magnetostrictive models with fully coupled physics. ...

Quick Search