Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Studying Transition Flows for Low Prandtl Number Fluids

H. Jamai[1], A. Elamari[1], M. El Ganaoui[2], F.S. Oueslati[1], B. Pateyron [2], and H. Sammouda[3]
[1]LETTM, Département of physics, F.S.T, Tunisie
[2]SPCTS UMR CNRS, Faculte of Sciences, Limoges, France
[3]ESST-H., Sousse, Tunisie

COMSOL Multiphysics is offering an important alternative to home codes for modeling and simulation of complex problems with including coupled effects on heat and mass transfer. The present work focuses on low Prandtl number fluid melts subject to symmetry breaking and transition to unsteady regimes. These configurations are for practical interest in crystal growth industry, namely the Bridgman ...

A Finite Element Test of the 2002-2003 Etna Eruption

F. Pulvirenti[1][2], M. Aloisi[1], G. De Guidi[2], M. Mattia[1], and C. Monaco[2]
[1]Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Catania, Italy
[2]Dipartimento di Scienze Geologiche, Università di Catania, Catania, Italy

Structural, morphological and ground deformation studies suggest that the eastern flank of Mt. Etna (eastern Sicily) is spreading seaward. Three contrasting models have been proposed: deep-seated spreading, shallow sliding and tectonic block movements. In order to better understand the kinematics of instability processes on eastern flank of Mt. Etna, a numerical simulation has been applied to a ...

Chemical Reactions in a Microfluidic T-Sensor: Numerical Comparison of 2D and 3D Models

R. Winz[1][2], N. Schröder[1], W. Wiechert[1], and E. von Lieres[1]
[1]Institute of Biotechnology 2, Research Centre Jülich, Jülich, Germany
[2]Research Center for Micro and Nanochemistry, University of Siegen, Siegen, Germany

In recent years lab-on-microchip technology has become a powerful tool for micro-scale analysis of biochemical processes. In the studied system the overall process consists of transport, convection, diffusion, reaction and adsorption processes. Two compounds A and B, contained in a carrier fluid (buffer), are introduced into a reaction channel via a Y-shaped double-inlet. As the streams flow ...

Gravity-Driven Film Flow: Design of Bottom Topography

C. Heining[1] and N. Aksel[1]

[1]Applied Mechanics and Fluid Dynamics, University of Bayreuth, Bayreuth, Germany

We study the gravity-driven film flow of a Newtonian liquid down an inclined plane. Many applications such as heat- and mass exchangers and evaporators or film coaters require undulated or rippled bottom topographies. In these cases, the interplay of gravity, surface tension and inertia leads to a response of the interface which furthermore strongly depends on the shape of the bottom topography. ...

COMSOL Multiphysics® as a Tool for Reducing Animals in Biomedical Research: An Application in Dermatology

F. Rossi[1] and R. Pini[1]
[1]Istituto di Fisica Applicata “Nello Carrara”, Consiglio Nazionale delle Ricerche, Firenze, Italy

In biomedical research the use of animal models gives rise to several ethical problems. COMSOL Multiphysics® may be used as a non-animal technique, very useful in overcoming all these concerns. In this presentation a particular application in dermatology is shown. Bioheat equation mode and diffusion approximation were used to design a theoretical model of blue LED light interaction with an ...

Simulation of Transport of Lipophilic Compounds in Complex Cell Geometry

Q.A. Chaudhry[1], M. Hanke[1], and R. Morgenstern[2]
[1]School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden
[2]Karolinska Institutet, Stockholm, Sweden

The mathematical modeling of the diffusion and reaction of toxic compounds in mammalian cells is tough task due to their very complex geometry. The heterogeneity of the cell, particularly the cytoplasm, and the variation of the cellular architecture, greatly affects the behavior of these toxic compounds. Homogenization techniques have been implemented for the numerical treatment of the model. ...

Study of an Electroacoustic Absorber

A-S. Moreau[1], H. Lissek[1], and R. Boulandet[1]
[1]EPFL-STI-IEL-LEMA, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

In this paper, the underlying concept of electroacoustic absorbers is studied with the help of Comsol Multiphysics® Acoustics Module. Among the different ways to obtain variable acoustic properties on an electroacoustic transducer's voicing face, there is the shunting of the transducer's electrical input. With such shunt devices, the acoustic impedance that the transducer's membrane presents ...

Simulation and Evaluation of Small High-Frequency Side Scan Sonars Using COMSOL

J. Jonsson[1], E. Edqvist[1], H. Kratz[1], M. Almqvist[2], and G. Thornell[1]
[1]Ångström Space Technology Centre, Uppsala University, Uppsala, Sweden
[2]Department of Measurement Technology and Industrial Electrical Engineering, Lund University, Lund, Sweden

High frequency side-scan sonar, to be fitted on a miniaturized submersible explorer, have been simulated and built. The purpose of this study is to see if COMSOL Multiphysics® can be used to predict the performance of the sonar, especially the beam width, setting the resolution of the system. Four models were created, from simple 2-D geometries to more complex 3-D models. The simulated beam ...

Simulation of a Heated Tool System for Jet Electrochemical Machining

M. Hackert[1], G. Meichsner[2], and A. Schubert[1][2]

[1]Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Jet Electrochemical Machining (Jet-ECM) is an unconventional procedure using localized anodic dissolution for micromachining. An increasing of the electrolyte temperature will lead to an increase of the electrical conductivity of the electrolyte by about 30% and to a reduction of the dynamic viscosity of the electrolyte by about 25 %. Both will improve the process. Therefore a Jet-ECM tool system ...

Modeling Mechanical Deformation and Optical Waveguiding Properties of Ion-Implanted Diamond

F. Bosia[1], P. Olivero[2], and E. Vittone[2]
[1]Dipartimento di Fisica Teorica, Università di Torino, Torino, Italy
[2]Dipartimento di Fisica Sperimentale, Università di Torino, Torino, Italy

Ion implantation in insulating materials leads to local variations in mechanical and optical properties that can be exploited for the fabrication of micro-structures. In particular, ion irradiation of diamond causes the formation of buried amorphised layers, with correspondent mass density and refractive index variations that depend on the level of “damage” of the crystal structure. ...