Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling Mechanical Deformation and Optical Waveguiding Properties of Ion-Implanted Diamond

F. Bosia[1], P. Olivero[2], and E. Vittone[2]
[1]Dipartimento di Fisica Teorica, Università di Torino, Torino, Italy
[2]Dipartimento di Fisica Sperimentale, Università di Torino, Torino, Italy

Ion implantation in insulating materials leads to local variations in mechanical and optical properties that can be exploited for the fabrication of micro-structures. In particular, ion irradiation of diamond causes the formation of buried amorphised layers, with correspondent mass density and refractive index variations that depend on the level of “damage” of the crystal structure. ...

A Multi-Physics Framework for the Geometric Optimization of a Diaphragm Electrostatic Micropump

E. Bertarelli[1], R. Ardito[1], E. Bianchi[1], K. Laganà[1], A. Corigliano[1], G. Dubini[1], and R. Contro[1]

[1]Department of Structural Engineering, Politecnico di Milano, Milano, Italy

In this work, an electrostatic diaphragm micropump is investigated by means of COMSOL Multiphysics®. A fluid-dynamic model is adopted to evaluate the fluid flow characteristics inside the pumping chamber, in static conditions. In parallel, electromechanical quasi-static simulations are performed to evaluate the occurrence of membrane movement and pull-in phenomena. Finally, a simplified ...

Quench Propagation in 1-D and 2-D Models of High Current Superconductors

G. Volpini[1]
[1]LASA Lab., Milan Dept., Istituto Nazionale di Fisica Nucleare, Milano, Italy

The understanding of quench, or the sudden transition to the normal state of a high-current Superconductor (SC), is fundamental for the design of a SC magnet, and it is widely discussed in the literature. This paper presents some simple COMSOL models, which are compared with well-known approximate formulae and some experimental results. These models allow a more precise description than it is ...

Simulation and Evaluation of Small High-Frequency Side Scan Sonars Using COMSOL

J. Jonsson[1], E. Edqvist[1], H. Kratz[1], M. Almqvist[2], and G. Thornell[1]
[1]Ångström Space Technology Centre, Uppsala University, Uppsala, Sweden
[2]Department of Measurement Technology and Industrial Electrical Engineering, Lund University, Lund, Sweden

High frequency side-scan sonar, to be fitted on a miniaturized submersible explorer, have been simulated and built. The purpose of this study is to see if COMSOL Multiphysics® can be used to predict the performance of the sonar, especially the beam width, setting the resolution of the system. Four models were created, from simple 2-D geometries to more complex 3-D models. The simulated beam ...

Droplet Generation by Means of a Two-Fluid Probe

B.P. Cahill[1], M. Quade[1], G. Gastrock[1], K. Lemke[1], J. Metze[1], and D. Beckmann[1]

[1]Institut für Bioprozess und Analysenmesstechnik e.V., Rosenhof, Heilbad Heiligenstadt, Germany

This paper presents a simulation of the operation of a new type of droplet generation probe. This probe, consisting of two concentrically-arranged tubings, is immersed in a beaker of cell medium so that oil is pumped through the outer tubing at a pumping speed less than fluid is drawn into the inner tubing. In this way, droplets of cell medium are entrained into the outlet tubing forming a ...

Control of Rolling Direction for Released Strained Wrinkled Nanomembrane

P. Cendula[1], S. Kiravittaya[1], J. Gabel[1], and O.G. Schmidt[1]

[1]Institute for Integrative Nanosciences, Dresden, Germany

Strained wrinkled and flat nanomembranes have different bending properties when they are released from the underlying substrate. This is caused by increased bending rigidity of the wrinkled film in one direction. We provide theoretical and numerical analysis of the directional rolling of wrinkled films, which is important for positioning rolled-up tubes on the short mesa edge during fabrication.

Towards a Model for Simulating Driving Rain on an Inclined Roof during Wind Gusts and Heavy Rain Intensity

A.W.M. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

The roof of a well known shopping place in Amsterdam collapsed during a storm with heavy rain showers in 2002. One of the main problems was the malfunction of the draining system. Another problem was that driving rain water apparently washed over edges that where designed to hold the water. This short paper presents the progress of using COMSOL to simulate the height of the water near the edges ...

Inverse Analysis for Heat Transfer Coefficient Identification

F. Tondini[1], P. Bosetti[1], and S. Bruschi[1]

[1]DIMS, University of Trento, Trento, Italy

The hot stamping of boron steels for producing complex structural components of the car body-in-white is more and more widespread. Optimization of sheet forming technologies at elevated temperatures is still troublesome, since the thermal, mechanical and metallurgical phenomena interacting during hot stamping force to feed the numerical model of the process by a huge amount of data, most of which ...

Thermal Simulation and Package Investigation of Wireless Gas Sensors

A. Paoli[1], L. Seminara[2], D.D. Caviglia[1], A. Garibbo[2], and M. Valle[1]

[1]Department of Biophysical and Electronic Engineering, University of Genova, Genova, Italy
[2]SELEX Communications S.p.A., Genova, Italy

Gas sensor arrays based on metal oxides operating at high temperature are commonly used in many application fields. They can operate on different principles and each sensor may show very different responses to the individual gases in the environment. Data coming from the array can be merged for reliable gas detection. One point which is common to the different sensors types is that the atmosphere ...

An Extension of Lauwerier’s Solution for Heat Flow in Saturated Porous Media

S. Saeid[1] and F.B.J. Barends[2]
[1]Technical University of Delft, Delft, The Netherlands
[2]Deltares and TU-Delft, Delft, The Netherlands

One of the crucial topics in this century is sustainable energy. In this respect, the exploitation of geothermal energy from deep hot aquifers becomes opportune. Hence, insight is required in the heat balance of potential aquifer systems. Essential issues are convection, conduction and dispersion. This article focuses on Lauwerier’s problem. As an extension, it is suggested that beside ...

Quick Search