Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation and Evaluation of Small High-Frequency Side Scan Sonars Using COMSOL

J. Jonsson[1], E. Edqvist[1], H. Kratz[1], M. Almqvist[2], and G. Thornell[1]
[1]Ångström Space Technology Centre, Uppsala University, Uppsala, Sweden
[2]Department of Measurement Technology and Industrial Electrical Engineering, Lund University, Lund, Sweden

High frequency side-scan sonar, to be fitted on a miniaturized submersible explorer, have been simulated and built. The purpose of this study is to see if COMSOL Multiphysics® can be used to predict the performance of the sonar, especially the beam width, setting the resolution of the system. Four models were created, from simple 2-D geometries to more complex 3-D models. The simulated beam ...

Simulation of a Heated Tool System for Jet Electrochemical Machining

M. Hackert[1], G. Meichsner[2], and A. Schubert[1][2]

[1]Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany

Jet Electrochemical Machining (Jet-ECM) is an unconventional procedure using localized anodic dissolution for micromachining. An increasing of the electrolyte temperature will lead to an increase of the electrical conductivity of the electrolyte by about 30% and to a reduction of the dynamic viscosity of the electrolyte by about 25 %. Both will improve the process. Therefore a Jet-ECM tool system ...

Punch Design for Uniaxial Forging Process of γ-TiAl Using COMSOL Multiphysics®

R. Cagliero[1] and G. Maizza[1]
[1]Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

The increasing demand for improved metallurgical products strongly motivates the optimization of manufacturing processes and design of γ-TiAl products. Among the large variety of available forming processes, cold closed-die forging is particularly suitable for producing net shape bulk products having good surface finish with better mechanical properties. Pressing punches of suitable profile ...

Study of an Electroacoustic Absorber

A-S. Moreau[1], H. Lissek[1], and R. Boulandet[1]
[1]EPFL-STI-IEL-LEMA, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

In this paper, the underlying concept of electroacoustic absorbers is studied with the help of Comsol Multiphysics® Acoustics Module. Among the different ways to obtain variable acoustic properties on an electroacoustic transducer's voicing face, there is the shunting of the transducer's electrical input. With such shunt devices, the acoustic impedance that the transducer's membrane presents ...

Thin Membrane Modelling for the Electrical Stimulation of Auditory Nerve

A. Grünbaum[1], S. Petersen[1], H.W. Pau[2], and U. van Rienen[1]

[1]IEF funded by DFG Research Training Group 1505/1 Welisa, University of Rostock, Rostock, Germany
[2]Otolaryngology “Otto Körner”, University of Rostock, Rostock, Germany

Modeling of 2-5 μm thin membranes into a cochlea with a width of 2 cm is computationally. The paper is focused on two approximative methods used to overcome this problem and in addition a simple model challenging of a plate capacitor with a thin membrane of different thickness in-between is presented. The results of simulations with both thin layer approximation methods are compared with those ...

The Use of Multiphysics Modeling in the Steel Industry

Filip Van den Abeele
Simulation Expert, OCAS, Belgium

OCAS is a joint venture between ArcelorMittal and the Flemish Region. She uses COMSOL Multiphysics for the following: Enamel solidification Magnetic Pulse Forming Electromagnetic modelling of electric machines Vortex Induced Vibrations Model Identification for Orthotropic Materials and much more ---------------------------------- Keynote speaker's biography:Filip Van den Abeele has a ...

High Temperature Process Simulation: An Example in Crystal Growth

H. Rouch[1] and O. Geoffroy[1]
[1]INOPRO, Villard de Lans, France

High temperature processes are used in a large variety of industrial application. Simulation helps to solve technological problems and increase energy efficiency in case of industrial scale simulation. We present in this paper a research equipment simulation. The aim is to increase knowledge of temperature field in the crystal growth region in order to give researcher some important information ...

A Fully Coupled Three-Dimensional Dynamic Model of Polymeric Membranes for Fuel Cells

P. Alotto[1], M. Guarnieri[1], and F. Moro[1]

[1]Dipartimento di Ingegneria Elettrica, Università di Padova, Padova, Italy

The proton exchange membrane is a key component in the currently widely studied Proton Exchange Membrane Fuel Cells. In this paper a fully coupled three-dimensional dynamic numerical model of the membrane including all the physically relevant phenomena, i.e. ion transport, hydration-dependent conductivity and thermal effects is presented. The highly non-linear model is discretized by means of the ...

Numerical Evaluation of Long-Term Performance of Borehole Heat Exchanger Fields

A. Priarone[1], S. Lazzari[1], and E. Zanchini[1]

[1]Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Alma Mater Studiorum - Università di Bologna, Bologna, Italy

The long-term performance of double U-tube Borehole Heat Exchangers (BHEs) is studied numerically by considering three different time-dependent heat fluxes exchanged between each BHE and the ground. Since the temperature distribution along the vertical direction has a negligible influence on long-term BHE performance, the problem is studied by means of a 2D conduction model, where the energy ...

Laminar Thermal Mixing in Coating Flows

A. Haas[1], M. Scholle[1], A. Aksel[1], H.M. Thompson[2], R.W. Hewson[2], and P.H. Gaskell[2]

[1]Department of Applied Mechanics and Fluid Dynamics, University of Bayreuth, Bayreuth, Germany
[2]School of Mechanical Engineering, University of Leeds, Leeds, United Kingdom

Heat transfer in a plane shear flow configuration consisting of two infinitely long parallel plates is considered. In laminar flows over undulated substrates eddies can be generated due to the kinematical constraints. A closed form analytical solution for the velocity field, based on lubrication theory as well as a semi-analytic solution for the temperature field is derived for the creeping flow. ...

Quick Search