Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulations of MEMS Based Piezoresistive Accelerometer Designs in COMSOL

N. Bhalla[1], S. Li[2], and D. Chung[1]
[1]Chung Yuan Christian University, Taiwan, (R.O.C)
[2]National Tsing Hua University, Taiwan, (R.O.C)

Different configurations of MEMS based accelerometer has been made and analysed using COMSOL Multiphysics. The designs presented in this paper consist of a square shaped proof mass with flexures supporting it. Different position and varied number of supporting flexures attached to the proof mass makes each configuration distinct. The piezoresistors are placed near the proof mass and frame ends on ...

Design of Cooling System for Electronic Devices Using Impinging Jets

P. Lin[1], C. Chang[2], H. Huang[3], and B. Zheng[4]
[1]Mechanical and Aerospace Eng., Rutgers, The State University of New Jersey, Piscataway, NJ
[2]FTR Systems (Shanghai) Inc., Shanghai, China
[3]PolarOnyx, Inc., San Jose, CA
[4]School of Mechatronics Eng., University of Electronic Science and Technology of China, Chengdu, China

The heat sink designs using impinging liquid jets, which form stagnation flows, feature uniform heat transfer coefficients, and provide thin thermal boundary layers, are studied to reduce the heat from GPUs. Three different designs using central, micro, and uniform-cross-section (UCS) central jets are studied and simulated in COMSOL. The efficiency factors, defined as the ratio of total ...

Ferromagnetic Materials for MEMS- and NEMS-Devices

A. Weddemann, J. Jadidian, S. Khushrushahi, Y. Kim, and M. Zahn
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge MA

The modeling of ferromagnetic materials is a challenging task of high industrial and academic impact. Thin film and granular systems form the basis of novel spintronic devices such as modern hard drives with a high data area storage density. In order to push the current limits even further and to design more efficient devices, a strong understanding of the governing dynamics is required. We ...

The Transient Modeling of Single-Bubble Nucleate Boiling in a Sub-Cooled Liquid Using an ALE Moving Mesh

C. J. Forster, and M. K. Smith
Georgia Institute of Technology
Athens, GA

This paper investigates the evolution of a single bubble going through growth, pinch-off, and condensation while rising due to buoyancy forces in a sub-cooled liquid. Phase change is modeled on the evolving liquid-vapor interface by considering changes in enthalpy and heat fluxes at the interface. A comparison of the ALE model is made with the same single-bubble system computed with a level-set ...

Simulation of PTFE Billet Sintering using COMSOL

A. Roday, and P. Nicosia
Garlock Sealing Technologies
Palmyra, NY

Sintering is an important step in the manufacturing of polytetrafluoroethylene (PTFE) billets. The challenge in heating large billets stems from the inherent low thermal conductivity of PTFE. Existing literature suggests determining maximum heating rate experimentally using recommended guidelines. This paper uses COMSOL to aid in optimizing the temperature profile required for a particular ...

Double Pipe Heat Exchanger Modelling - COMSOL Uses in Undergraduate Education

L. Desgrosseilliers, and D. Groulx
Mechanical Engineering
Dalhousie University
Halifax, NS
Canada

A cornerstone of Chemical and Mechanical Engineering undergraduate programs the world over is the experimental and theoretical study of heat exchange. Graduating engineering students gain some appreciation in their lab course by comparing empirical correlations combined with the thermodynamics of heat exchange with the real operation of a counter-current, double pipe, single-phase heat exchanger.

FEM Analysis of Laser-Induced Heating of Gold Nanoparticles

D. Gonzalez[1], J. Gardner[1], and O. Tigli[2]
[1]Biomedical Engineering, University of Miami, Coral Gables, FL,
[2]Electrical and Computer Engineering, University of Miami, Coral Gables, FL

Nanoparticles are being extensively researched as a noninvasive method for selectively targeting and killing cancer cells. In this study, we model the thermal activation of gold nanospheres and nanorods in a fluidic environment to determine the thermal response of the surrounding medium.

Large Scale Simulation on Clusters Using COMSOL

D. Pepper[1], X. Wang[2], S. Senator[3], J. Lombardo[4], and D. Carrington[5]
[1]DVP-USAFA-UNLV
[2]Purdue-Calumet
[3]USAFA
[4]NSCEE
[5]T-3 LANL

Darrell Pepper is Professor of Mechanical Engineering and Director of the Nevada Center for Advanced Computational Methods at the University of Nevada Las Vegas (UNLV). He was recently appointed Distinguished Visiting Professor at the US Air Force Academy where he will be in residence until May 2012. In 2004, Dr. Pepper was appointed ASME Congressional Fellow and worked as a senior legislative ...

Designing a Smart Skin with Fractal Geometry

S. Ni, C. Yang Koh, S. Kooi, and E. Thomas
Institute for Soldier Nanotechnologies
Dept. of Materials Science and Eng.
MIT
Cambridge, MA

Recently, the concepts of fractal geometry have been introduced into electromagnetic and plasmonic metamaterials. With their self-similarity, structures based on fractal geometry should exhibit multi-band character with high Q factors due to the scaling law. However, there exist few studies of phononic metamaterials having fractal geometry. COMSOL is used to investigate vector elastic and ...

Finite Element Convergence for Time-Dependent PDEs with a Point Source in COMSOL 4

M. Gobbert, and D. Trott
University of Maryland Baltimore County
Baltimore, MD

Many application problems have non-smooth forcing terms, such as the Dirac delta function. The convergence order for the FEM solution is limited by the regularity of the solution in this case. This paper presents information on the techniques needed in COMSOL 4 to enable FEM convergence studies for time-dependent problems of this type, including how to correctly implement the Dirac delta ...

Quick Search