Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Patch Antenna Model for Unmanned Aerial Vehicle

T. Eppes, I. Milanovic, and S. Thiruvengadam
University of Hartford
West Hartford, CT

Patch antennas are widely used in communications links with unmanned aerial vehicles. Their hemispherical send and receive patterns enable the systems to maintain radio frequency contact over a wide range of vehicular attitudes. A microstrip-fed design offers other attractive features including lightweight, inexpensive, and a 3-D structure that can be easily integrated into the fuselage. This ...

Using the Superposition Principle and Edge Current Model to Compute Impedance of the Coil in a Logging Tool

T. Zhao, G. Minerbo, J. Hunka, and G. Hazen
Schlumberger
Sugar Land, TX

Coil antenna is the simplest form in well-logging tools for resistivity measurement of the formation. This paper introduces how to accurately compute the impedance of the coil with very thin wires at high frequency, and with the complex borehole structure, e.g., metal housing and collar. A 3D RF electromagnetic wave in frequency domain is used. An alternate array of transmitters and receivers ...

Boundary Element Technique in Petroleum Reservoir Simulation

M. Liu, and G. Zhao
University of Regina
Regina, SK
Canada

Petroleum reservoir simulation is a process of modeling the complex physical phenomena inside a reservoir. This study presents an application of an analytical based numerical scheme so called the Boundary Element Method (DRBEM). It is proven to be able to provide a computationally efficient means of handling single and multiphase flow in a homogeneous medium through the comparison study with ...

Modeling of Microwave Heating of a Rotating Object in a Domestic Oven in COMSOL Multiphysics

J. Raj[1], S. Birla[2], K. Pitchai[3], J. Subbiah[2], and D. Jones[2]
[1]Indian Institute of Crop Processing Technology, Thanjavur, Tamil Nadu, India
[2]Dept. of Biological Systems Engineering, University of Nebraska Lincoln, Lincoln, NE
[3]Dept. of Food-Science, University of Nebraska Lincoln, Lincoln, NE

Domestic microwave ovens are notorious for their uneven heating of food materials. This is caused by a varying electromagnetic field whose variation is caused by a number of factors dependent on the oven and the food parameters. Experimental validation of heating would therefore give highly variable results and would be labour, resource and time intensive. Thus modeling of the microwave ...

Deformation of Biconcave Red Blood Cell in the Dual-Beam Optical Tweezers

Y. Sheng, and L. Yu
University Laval
Quebec City, QC
Canada

A biconcave-shaped Red Blood Cell was trapped and deformed in a dual-trap optical tweezers. The two highly focused trapping beams of Gaussian intensity distribution were modeled as background field in the COMSOL Radio Frequency Module. The 3D radiation stress distribution on the cell surface was computed via the Maxwell stress tensor. The 3D deformation of the cell was computed with the COMSOL ...

Hybrid FEM-BEM Approach for Two- and Three-Dimensional Open Boundary Magnetostatic Problems

A.Weddemann[1], D. Kappe[2], and A. Hütten[2]
[1]Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, USA
[2]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

In principal, the calculation of the magnetic state inside a magnetic object requires the evaluation of the field in the entire unbounded space. With finite element methods restricted to finite domains, commonly auxiliary domains are employed which result in a non-physical cut-off. Not only are these additional domains result in an increased number of degrees of freedom which are strictly ...

Simulation of Dendritic Solidification in Cubic and HCP Crystals by Cellular Automaton and Phase-Field Models

M. A. Zaeem[1], H. Yin[2], and S. D. Felicelli[3]
[1]Center for Advanced Vehicular Systems, Mississippi State University, MS
[2]Oak Ridge National Laboratory, TN
[3]Mechanical Engineering Department, Mississippi State University, MS

A cellular automaton (CA)-finite element (FE) model and a phase field (PF)-FE model were used to simulate equiaxed dendritic growth during solidification of cubic and hexagonal crystals. The governing equations of PF model include three coupled partial differential equations (PDE) for evolution of concentration, temperature, and non-conserved PF variable. These PDEs were solved using the ...

Modelling Aircraft Fuel Gauging Unit using COMSOL Multiphysics Software

T. Ekwevugbe[1], and G. Bevan[2]
[1]Institute of Energy and Sustainable Development, De Montfort University, Leicester, United Kingdom
[2]School of Engineering and Computing, Glasgow Caledonian University, Glasgow, Scotland

An investigation was undertaken into the suitability of using COMSOL for modeling an aircraft capacitive fuel gauging unit. A model of a sensor immersed in a fluid was developed for rectangular tank geometry with a range of fluid levels and sensor orientation using the electrostatics application mode in COMSOL’s AC/DC module The importance of modeling the capacitance of air was demonstrated. ...

Densification and Shape Change of Calcined High Level Waste During Hot-Isostatic Pressing

T. Burnett, and D. Lower
CH2M-WG Idaho, LLC
The Idaho Cleanup Project at the Idaho National Laboratory
Idaho Falls, ID

Hot Isostatic Pressing (HIP) has been selected as a means of treating calcined high level waste (HLW). The process combines high temperature and pressure to densify the HLW in to a mineral similar to the geologic formulation of granite. This study uses COMSOL to predict densification and shape deformation of a stainless steel can filled with HLW. Two approaches were used to model densification ...

Watching Paint Dry: A 2D Model of Latex Film Formation

W. Vetterling
ZINK, Imaging Inc.
Bedford, MA

In this work we have constructed a 2D COMSOL model for the drying of Latex. It is based on a prior 1D model of Kiil, but also includes the effects of a flowing air stream, which is necessary to remove the evaporated water vapor. The model illustrates several features of drying that are not accessible to the 1D model, in particular the a profile in the air/water interface that forms near the ...

Quick Search