Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Analysis of the 3-omega-method

M. Feuchter, and M. Kamlah
Karlsruhe Institute of Technology (KIT)
Institute for Applied Materials
Karlsruhe, Germany

Determining the thermal conductivity of condensed matter attracted much attention in past years. While several techniques exist to measure the thermal conductivity of solids or thin films, the 3-omega-method is one of the most well-established due to its high accuracy. First, COMSOL Multiphysics is used for numerical analysis to perform various parametric studies. To study the flow of heat, ...

Analysis of a Three-phase Transformer Using COMSOL Multiphysics and a Virtual Reality Environment

A.Buchau, and W. M. Rucker
Institut für Theorie der Elektrotechnik
Universität Stuttgart
Stuttgart, Germany

The simulation software COMSOL Multiphysics is applied to the numerical com-putation of the magnetic fields of a three-phase transformer. A three-dimensional model of the geometrical configuration is created with the help of the CAD tools of COMSOL Multiphysics. There, all dimensions of the transformer are defined by parameters. The creation of an optimal finite element mesh is improved by some ...

Multiphysics Design of ESS-Bilbao Linac Accelerating Cavities Using COMSOL

J. L. Munoz, and I. Rodriguez
ESS-Bilbao
Bilbao, Spain

A proton linac drives particles using the electric field of a high power RF standing wave in a resonant cavity. The design of these cavities involve several aspects of multiphysics simulation, that have been accomplished using COMSOL. The first step consist on the geometric optimization of the cavities in order to have the correct frequency while maximizing some figures of merit. This task ...

Numerical Analysis of Propeller-induced Low-frequency Modulations in Underwater Electric Potential Signatures of Naval Vessels in the Context of Corrosion Protection Systems

D. Schaefer[1], J. Doose[2], A. Rennings[1], and D. Erni[1]
[1]General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
[2]Technical Center for Ships and Naval Weapons (WTD 71), Bundeswehr, Eckernförde, Germany

Since October 2009 the laboratory of ATE has carried out collaborative research with the WTD 71 that aims for prediction, reduction and optimization of so-called underwater electric potential (UEP) signatures. COMSOL is used to simulate potential distributions in the context of impressed current cathodic protection (ICCP) systems. The electrode kinetics is considered by using boundary conditions ...

Fluid Structure Interaction Applied to Upper Aorta Blood Flow

J. Anza[1], and M. Esteves[2]
[1]Department of applied mathematics, University of the Basque Country, Bilbao, Spain
[2]University of the Basque Country, Bilbao, Spain

This work deals with the computer simulation of the blood flow, the arterial wall deformation and their 3D bidirectional interaction, including initial stresses and root displacements. The flow is laminar and steady with flexible walls modeled with a hyperelastic Demiray material model. Poiseuille formula is used to check the bidirectional interaction. 2D axisymmetric and full 3D models have ...

COMSOL Assistance for the Modeling of Cellular Microsystems

J. Berthier
CEA-LETI-Minatec
Grenoble, France

The developments of microsystems for biotechnology have been fast in the last few years, and no sign of slowing down is observed. It has begun with lab-on-chip for genomics, especially for the recognition of DNA sequences, followed by protein reactors and immunoassays, and today the emphasis is on cellomics. Cell-chips are design to monitor the behavior of cells, individually or as a group, ...

An Elastic and Hyperelastic Material Model of Joint Cartilage - Calculation of the Pressure Dependent Modulus of Elasticity by Comparison with Experiments and Simulations

T. Reuter, and M. Hoffmann
fzmb GmbH
Research Centre of Medical Technology and Biotechnology
Bad Langensalza, Germany

In this paper we introduce a elastic and hyperelastic model to describe the biomechanics of joint cartilage. As biomechanical property we calculated the pressure dependent E-modulus E = f(s) to describe the dependence of the biomechanical properties on pressure. The calculation based on the comparison and the iterative approach of the force-way-functions between the experiments and ...

Numerical Modelling of Compact High Temperature Heat Exchanger

O. Smirnova, T. Fend, and D. Schöllgen
Institut of Solar Research in German Aerospace Agency
Cologne, Germany

For the numeric investigations of the high temperature compact heat exchanger two numeric models with and without the regards of the velocity field development were used. The results of the comparison of the numeric and experimental data confirm the necessity of regarding the velocity field development for the compact heat exchangers. The two-dimensional simulation task with the regard of ...

Simulation of Electrochemical Etching of Silicon with COMSOL

A. Ivanov
Hochschule Furtwangen
Furtwangen, Germany

Electrochemical etching of silicon (anodization) is a process that can be used for etching of forms of nearly arbitrary shapes. The difficulty of applying the process for mass production is in the many parameters influencing the process, such as electrolyte concentration and temperature, silicon substrate doping and type, and so on. COMSOL as an FEM simulation tool is very suitable for ...

3D FEM-analysis of a Micromachined Wind Sensor Based on a Self-heated Thermistor Array

A. Talic[1], S. Cerimovic[2], M. Mutapcic[2], R. Beigelbeck[1], and F. Keplinger[2]
[1]Institute for Integrated Sensor Systems, Austrian Academy of Sciences, Wiener Neustadt, Austria
[2]Institute of Sensor and Actuator Systems, Vienna University of Technology, Vienna, Austria

We present COMSOL-based analyses and design optimizations of a micromachined wind sensor. The sensor relies on eight germanium thermistors embedded in a thin silicon nitride membrane, where two orthogonally arranged ensembles, each consisting of four thermistors, are connected to form a double Wheatstone-bridge. In operation, each bridge is supplied by a constant current and the self-heating of ...

Quick Search