Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Comparison of Computational Methods for the Estimation of the Dielectrophoretic Force Acting on Biological Cells and Aggregates in Silicon Lab-on-chip

S. Burgarella[1], F. Maggioni[2], and G. Naldi[2]
[1]STMicroelectronics, Agrate Brianza, Milan, Italy
[2]Department of Mathematics, University of Milan, Milan, Italy

Dielectrophoresis is a method for cell manipulation in miniaturized devices exploiting the dielectric properties of cells and/or cellular aggregates suspended in a fluid and subjected to a high-gradient electric field. The mathematical expression of the force is obtained by a multipole expansion whose terms involve increasing power of the particle\'s radius. Three methods for the expression of ...

Verification and Validation of Flow and Transport Processes in Fractured Porous Media

J. Perko, S. C. Seetharam, and D. Mallants
Belgian Nuclear Research Centre
SCK-CEN, Belgium

Knowledge of the effect of fractures on fluid flow and transport is of great interest in many fields. In radioactive waste disposal the interest in fractures within concrete structure is because they are mostly more permeable than the matrix, there is less or no sorption and because long-term chemical concrete degradation could progress faster. Assessment of long-term transport processes is ...

Optimization of a Multiphysic Device – A Comparison of a Finite-Element- and a Equation-based Simulation

M. Jungwirth, and B. Hansbauer
University of Applied Sciences
Wels, Austria

To avoid overheating and malfunction of an electrical system it is necessary to optimize the power-loss of each component. The power dissipation mostly depends on multiple physical effects and therefore optimization is not an easy task. In this paper we focus on the reduction of complexity employing a equation-based simulation and compare it with a Finite-Element (FE) simulation in the ...

3D Simulation of Heat and Moisture Diffusion in Constructions

M. Bianchi Janetti, and F. Ochs
University of Innsbruck
Unit Building Physics
Innsbruck, Austria

The simulation of heat and moisture transfer represents an essential resource in designing energy efficient buildings. In this paper a time-dependent wall model, consisting of several homogeneous domains, with third-type boundary conditions imposed on the surfaces, is implemented in the COMSOL Multiphysics environment. Temperature and moisture content is calculated inside the construction for ...

FEM Simulations of Rod-Type Photonic Crystal Slabs as Resonant Microsystems for Optical Gas Sensors

C. Kraeh, and H. Hedler
Siemens AG, Munich
Munich, Germany

We are developing a solid state gas sensor that combines a small form factor with the high sensitivity of optical gas detection. The gas sensor is based on an optical resonant microsystem that is penetrated by gas molecules. This microsystem consists of an array of vertical rods in air forming a photonic crystal. Light propagates through the photonic crystal along a line defect waveguide. For ...

Semismooth Newton Method for Gradient Constrained Minimization Problem

S. Anyyeva, and K. Kunisch
Institute of Mathematics and Scientific Computing
Karl Franzens University
Graz, Austria

We treat a gradient constrained minimization problem which has applications in mechanics and superconductivity. A particular case of this problem is the elastoplastic torsion problem. In order to solve the problem we developed an algorithm in an infinite dimensional space framework using the concept of the generalized Newton derivative. The Desktop environment of COMSOL Multiphysics 4.1 was ...

Near-fields in Arrays of Triangular Particles: Coupling Effects and Field Enhancements

M. Goncalves[1], T. Makaryan[2], G. Papageorgiou[3], U. Herr[3], and O. Marti[1]
[1]Ulm University - Inst. of Experimental Physics, Ulm, Germany
[2]Yerevan State University, Yerevan, Armenia
[3]Ulm University - Institute of Micro and Nanomaterials, Ulm, Germany

Surface enhanced Raman scattering (SERS) investigations of silver and gold triangular nanoparticles reveal strong field enhancements at the corners of the particles. Though the measurements were done at wavelengths far from the surface-plasmon resonance of the particles, large field enhancements can be generated by near-field coupling between the triangular particles and smaller metal ...

Rapid Control Prototyping for the Production of Functionally Graded Materials with Tailored Microstructural Properties Utilizing Comsol Multiphysics

J. Clobes[1,2], H.-J. Watermeier[2], M. Alsmann[2], H. H. Becker[2], and K. Steinhoff[1]
[1]University of Kassel - Chair of Metal Forming Technology, Kassel, Germany
[2]Volkswagen AG, Kassel, Germany

Within the field of hot metal bulk forming the demand arises for fully three-dimensionally tailored properties at the microstructural level, nevertheless, reaching a predefined geometry with such tailored properties puts high requirements on the control mechanisms utilized in the process chain for combined heating, metal forming, and cooling processes. A simulation based rapid control ...

Numerical Analysis of Propeller-induced Low-frequency Modulations in Underwater Electric Potential Signatures of Naval Vessels in the Context of Corrosion Protection Systems

D. Schaefer[1], J. Doose[2], A. Rennings[1], and D. Erni[1]
[1]General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
[2]Technical Center for Ships and Naval Weapons (WTD 71), Bundeswehr, Eckernförde, Germany

Since October 2009 the laboratory of ATE has carried out collaborative research with the WTD 71 that aims for prediction, reduction and optimization of so-called underwater electric potential (UEP) signatures. COMSOL is used to simulate potential distributions in the context of impressed current cathodic protection (ICCP) systems. The electrode kinetics is considered by using boundary conditions ...

Design of Electroacoustic Absorbers Using PID Control

H. Lissek, R. Boulandet, and M. Maugard
Ecole Polytechnique Federale de Lausanne
Lausanne, Switzerland

An \"electroacoustic absorber\" is a loudspeaker, used as an absorber of sound, which acoustic impedance can be varied by electrical means. This can be achieved either by plugging passive shunt electric networks at the loudspeaker terminals (“shunt loudspeakers”) or by feeding back the loudspeaker with a voltage proportional to acoustic quantities, such as sound pressure and diaphragm normal ...

Quick Search