Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Effects of Fluid and Structural Forces on the Dynamic Performance of High Speed Rotating Impellers.

C. Thiagarajan[1], G. Shenoy[2], B. S. Shenoy[3]
[1]ATOA Scientific Technologies Pvt Ltd, Whitefield, Bangalore, India.
[2]Department of Mechanical & Manufacturing Engineering, Manipal Institute of technology, Manipal, India
[3]Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal, India

Vibration and Dynamic performances of the rotating machinery are conventionally evaluated based on the dominant structural forces such as the centrifugal forces. The increase in rotational speed, miniaturization and performance, demands for improved and accurate evaluation of the vibration performance. The inclusion of coupled effects of fluid and centrifugal forces can contribute significantly ...

A study on Spray Drying in Food Industry

S. Singh[1], N. Baheti[1], A. Tiwari[1]
[1]Institute of Engineering & Science, IPS Academy, Indore, Madhya Pradesh, India

Spray drying is a common drying technique in food industries to convert liquid to powder form. A good understanding on the dynamic behavior of the process is important to ensure proper control. The aim of this study is to develop empirical models for spray drying of whole milk powder and orange juice powder. A preliminary study on the effect of several inputs such as inlet air temperature, feed ...

Simulation of Flux Density in a Hybrid Coil SMES using COMSOL Multiphysics

S. Roy[1], G. Konar[1]
[1]Power Engineering Department, Jadavpur University, Kolkata, West Bengal, India

Energy storage is an essential component for hybrid power system using non-conventional energy resources. Batteries, compressed air energy storage, pumped hydro plants etc. have been developed for storage. However, these have demerits like losses involved in energy conversion and time delay. Superconducting Magnetic Energy Storage (SMES) can be a good alternative as it stores electrical energy in ...

Design and Analysis of Micro-Heaters for Temperature Optimization using COMSOL Multiphysics for MEMS Based Gas Sensor

V. S. Selvakumar[1], L. Sujatha[1]
[1]Rajalakhmi Engineering College, Chennai, Tamil Nadu, India

Micro-Heaters are the key components in sub-miniature micro-sensors, especially in gas sensors. The metal oxide gas sensors utilize the properties of surface adsorption to detect changes in resistance as a function of varying concentration of different gases [5]. To detect the resistive changes, the heater temperature must be in the requisite temperature range over the heater area. Hence the ...

Simulation and Optimization of MEMS Piezoelectric Energy Harvester with a Non-traditional Geometry

S. Sunithamani[1], P. Lakshmi[1], E. E. Flora[1]
[1]Department of EEE, College of Engineering, Anna University, Chennai, India

Piezoelectric energy harvester converts mechanical vibrations into electrical energy via piezoelectric effect. The geometry of the piezoelectric cantilever beam greatly affects its vibration energy harvesting ability [1]. In this paper a MEMS based energy harvester with a non-traditional geometry is designed. The design of the energy harvester consists of a rectangular cantilever structure with ...

Finite Element Simulation of Induction Heating of a Tubular Geometry

K. Madhusoodanan[1], J. N. Kayal[1], P. K. Vijayan[1]
[1]Bhabha Atomic Research Centre, Trombay, Mumbai, India

In Pressurised Heavy Water Reactors (PHWRs), the fuel bundles are located inside horizontal pressure tubes made of Zr 2.5 wt% Nb alloy. During reactor operation, pressure tubes undergo corrosion reaction with the heavy water coolant flowing through it and picks up a part of the hydrogen evolved. Assessment of the hydrogen concentration in the pressure tube forms part of the programme to assess ...

Finite Element Analysis of a Fiber Bragg Grating Accelerometer for Performance Optimization

N. Basumallick[1], A. Ghosh[1], P. Biswas[1], K. Dasgupta[1], S. Bandyopadhyay[1]
[1]Fiber Optics Laboratory, Central Glass and Ceramic Research Institute, Kolkata, West Bengal, India

Sensitivity of a cantilever-mass based fiber Bragg grating (FBG) accelerometer can efficiently be tailored by altering the distance between the axis of the FBG sensor to the neutral axis of the cantilever. To accomplish that in general, a backing patch is used to mount the FBG on the cantilever. Use of finite element analysis to quantify the influence of the material constant (Young’s modulus) ...

Miscible Viscous Fingering: Application in Chromatographic Columns and Aquifers

S. Pramanik[1], G. L. Kulukuru[1], M. Mishra[1]
[1]Indian Institute of Technology Ropar, Rupnagar, Punjab, India

When a less viscous fluid displaces a more viscous one in a porous medium or Hele-Shaw cell, the interface between the two miscible fluids does not remain flat and deforms into fingers growing in time [1]. It occurs due to the faster movement of less viscous fluid than the more viscous one, for a given pressure gradient. Fingering affects in aquifers, in packed bed reactors, and detrimental to ...

Multiphysics Simulations of Granular Sludge on the Optimization of Effluent Treatment Plant

S. Gunsekaran [1], R. C. Thiagarajan[1]
[1]ATOA Scientific Technologies Private Limited, Bangalore, India

Multiphysics Simulations of Physico-chemical and Biological Treatment of wastewater is increasing due to the demand for cost efficient plant design and utilization. Among the many processes, a thorough understanding of the settling behavior of an activated granular sludge in the secondary settler of an Effluent Treatment Plant (ETP) is critical for the plant designers to determine the efficiency ...

A Study on the Suitability of Indium Nitride for THz Plasmonics

A. Shetty[1], K. J. Vinoy[1], S. B. Krupanidhi[2]
[1]Electrical Communication Engineering, Indian Institute of Science, Bangalore, India
[2]Materials Research Centre, Indian Institute of Science, Bangalore, India

As interest in the electromagnetic spectrum expands towards the infrared and terahertz range, the distinct advantages of using semiconductors instead of metals for plasmonic applications must be understood. Plasmonic resonances in gold (Au) and indium nitride (InN) gratings are studied, in the terahertz (?=30µm) regime. The electromagnetic properties of Au and InN are described by the Drude ...

Quick Search