Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Laminar Flow Static Mixers

N. Elabbasi[1], X. Liu[1], S. Brown[1], M. Vidal[2], M. Pappalardo[2]
[1]Veryst Engineering LLC, Needham, MA, USA
[2]Nordson EFD, East Providence, RI, USA

Laminar flow static mixers are accurate, inexpensive fluid mixing devices that can handle a wide range of fluids and mixing proportions. They have a wide range of industrial applications, especially in the consumer product, pharmaceutical, biomedical, and petrochemical industries. A good mixing quality is obtained when the outlet of the mixer has no concentrated volumes of either mixed materials ...

Natural Convection Driven Melting of Phase Change Material: Comparison of Two Methods

D. Groulx[1], F. Samara[1], P.H. Biwole[2]
[1]Department of Mechanical Engineering, Dalhousie University, Halifax, NS, Canada
[2]Department of Mathematics and Interactions, University of Nice Sophia-Antipolis, Nice, France

Design of latent heat energy storage systems (LHESS) requires knowledge of heat transfer processes within them, as well as the phase change behavior of the phase change material (PCM) use. COMSOL Multiphysics can be used to model (LHESS). Natural convection plays a crucial role during the charging phase of the LHESS, and methods to incorporate this heat transfer mode within COMSOL simulation of ...

Orientation of Piezoelectric Crystals and Acoustic Wave Propagation

G. Zhang[1]
[1]Clemson University, Clemson, SC, USA

Surface acoustic wave (SAW) devices are commonly used as wireless filters, resonators, and sensors. The confinement of acoustic energy near the surface of a piezoelectric substrate in a SAW sensor makes it highly sensitive for discerning surface perturbation. As sensors, SAW devices have the potential to provide a high-performance sensing platform with capabilities of remote and high-temperature ...

Finite Element Solution of Nonlinear Transient Rock Damage with Application in Geomechanics of Oil and Gas Reservoirs

S. Enayatpour[1], T. Patzek[1]
[1]The University of Texas at Austin, Austin, TX, USA

The increasing energy demand calls for advances in technology which translate into more accurate and complex simulations of physical problems. Understanding the rock damage is essential to understanding the geomechanics of hydrocarbon reservoirs. The fragile microstructure of some rocks makes it difficult to predict the propagation of fracture in these rocks, therefore a mathematical model is ...

Design of a Pressure Sensor to Monitor Teeth Grinding

I.M. Abdel-Motaleb[1], K. Ravanasa[1], K.J. Soderholm[2]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA
[2]Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL USA

Studying teeth grinding behavior and other oral conditions requires the ability to accurately measure the pressure on the teeth. Placing a sensor in the mouth requires small size devices with powering and measurement techniques that do not hinder the normal life of the patient. To meet these requirements, we designed, using COMSOL, a small, easy to read MEMS capacitive force sensor, with ...

Modeling Internal Heating of Optoelectronic Devices Using COMSOL

N. Brunner[1][,][2]
[1]Voxtel, Inc, Beaverton, OR, USA
[2]University of Oregon, Eugene, OR, USA

In this paper the heat transfer module in COMSOL is utilized to simulate internal heating of an Avalanche Photodiode due to light-induced current through a resistivity that depends on charge carrier concentrations in the device. Initial tests are done by modeling the heating process on a previously-solved silicon p-n junction as a proof of concept before advancing to a more complicated geometry. ...

Simulation of Microwave Heating of Porous Media Coupled with Heat, Mass and Momentum Transfer

J. Subbiah[1], J. Chen[1], K. Pitchai[1], S. Birla[1], D. Jones[1]
[1]University of Nebraska, Lincoln, NE, USA

A microwave heating model coupled with heat, mass, and momentum transfer is needed to fully understand the microwave heating process. In this study a comprehensive 3D model was developed for studying the interaction of microwave with the food. The model includes physics of Maxwell’s electromagnetic heating, Fourier’s heat transfer, Darcy’s momentum transfer, mass conservations of water and ...

Turbulent Compressible Flow in a Slender Tube

K.O. Lund[1], C.M. Lord[2]
[1]Kurt Lund Consulting, Del Mar, CA, USA
[2]Lord Engineering Corp., Encinitas, CA, USA

Pressure-drop experiments were conducted for the turbulent, compressible flow of air in a small, slender tube, and modeled with COMSOL heat transfer module, and analytically. A scalar integration variable is introduced which integrates the mass velocity [kg/m²s] over the inlet area and iteratively equates this to the input mass flow [kg/s]. For computation, the temperature specification is ...

Simulation of Deformed Solid Particles in Constrained Microfluidic Channel

M. Cartas-Ayala[1], R. Karnik[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Characterization of particles has numerous applications in science and diagnostics. Recently, particle passage through constrained microchannels has been proposed to characterize particles based on their passage velocity. Nevertheless, there is no clear understanding of how the physics in this system interact. Here we quantify the effects of the flow around the particle by simulating the passage ...

Piezoelectric Buzzer Optimization for Micropumps

A. Garcia[1], A. Marcus[1], F. Tejo[1], C. Precker[1], C. Moreira[2]
[1]Universidade Federal de Campina Grande, Campina Grande, PB, Brazil
[2]Instituto Federal de Alagoas, Maceio, AL, Brazil

Piezoelectric buzzers are low cost devices which can be used successfully as actuators in diaphragm-based micro-pumps. The buzzers are piezoelectric wafers (lead-zirconate-titanate-PZT) that are glued on a brass membrane and they are available within different sizes and thicknesses. For the best performance of a diaphragm pump, it is necessary to have a large displacement of the membrane. This ...

Quick Search