Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Ammonia Removal From Water by a Liquid-Liquid Membrane Contactor Under a Closed Loop Regime

E. Licon[1], S. Casas[1], A. Alcaraz[1], J.L. Cortina[1], C. Valderrama[1]
[1]Universitat Politécnica de Catalunya, Barcelona, Spain

Ammonia separation from water by membrane contactor was simulated on transient state and compared with experimental data. Aqueous low concentrated solution of ammonium with high pH has been pumped inside the hydrophobic hollow fibers, acid solution in the outside part. The system is in closed loop configuration. In order to simulate the separation process, equations were developed considering ...

Sulfur Deactivation Effects on Catalytic Steam Reforming of Methane Produced by Biomass Gasification

P. Sadooghi[1], R. Rauch[1]
[1]Vienna University of Technology, Vienna, Austria

Sulfur, which is incorporated in the biomass structure, is released into the product gas during gasification as hydrogen sulfide. Hydrogen sulfide is known to deactivate nickel based steam reforming catalysts by chemisorption on the metal surface during steam reforming process. Desulfurization has a negative effect on the process efficiency therefore steam reforming has to be run without ...

Computational Modeling and Simulation of the Human Duodenum

B. Hari[1], S. Bakalis[1], P. Fryer[1]
[1]The University of Birmingham, School of Chemical Engineering, Edgbaston, Birmingham, United Kingdom

Worldwide attention in the computational modeling and simulation of the human intestine is increasing in order to help understand its complex behavior and improve health. Computational fluid dynamics is an essential tool to understand the mechanics and transport phenomena of the human intestine, thereby advancing the diagnosis and treatment of gastrointestinal related diseases. The aim of this ...

Fretting Wear and Fatigue Analysis of a Modular Implant for Total Hip Replacement

M.S. Yeoman[1], A. Cizinauskas[1], D. Rangaswamy[1]
[1]Continuum Blue, Tredomen, Ystrad Mynach, United Kingdom

Modular orthopaedic devices are a feature of total joint replacements today. These modular orthopaedic devices allowing surgeons to choose from a variety of available implant sizes, designs & material options for the procedure required and the patient specific requirements. However, even though this allows for greater scope of implant construction, if the various components of the modular design ...

Solar Cell Cooling and Heat Recovery in a Concentrated Photovoltaic System

M. Cozzini[1]
[1]Fondazione Bruno Kessler (FBK), Renewable Energies and Environmental Technologies (REET) Unit, Trento, Italy

Concentrated photovoltaic systems with high efficiency solar cells are being widely investigated, aiming at improving the cost-efficiency balance in the solar energy field. Different cell types are in use: e.g., high concentration triple junction cells, reaching efficiencies of the order of 35 - 40 % at 1000 suns, and medium concentration mono-crystalline silicon cells, with efficiencies of the ...

Assessing the Potential of Ventilated Facades on Reducing a Buildings’ Thermal Load Using Decoupled COMSOL Simulations

J. van Schijndel[1], C. van Dronkelaar[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

Solar radiation is a prominent contributor of energy in buildings, and can be transmitted directly into a building through opaque surfaces, but it can also be absorbed by building components (i.e. walls, roofs etc.). This study discusses the use and effect of ventilated facades, with an external facade cladding, a sub-structure anchored to the wall surface of the building under solar radiation, ...

Microscale Simulation of Nanoparticles Transport in Porous Media for Groundwater Remediation

F. Messina[1], M. Icardi[1], D. Machisio[2], R. Sethi[1]
[1]Politecnico di Torino - DIATI, Torino, Italy
[2]Politecnico di Torino - DISAT, Torino, Italy

Nanoscale zerovalent iron is a promising reagent for the remediation of contaminated groundwater. The aim of the study is to simulate the transport of iron nanoparticles and their interaction with the porous media, their attachment and deposition on the soil grains. The particles trajectories is determined by several forces, some of them are significance only close to grains surfaces where, ...

Geometric Modeling and Numerical Simulation of Airfoil Shapes Using Integrated MATLAB® and COMSOL Multiphysics

A. Safari[1], H. Lemu G.[1], H. Severson[1]
[1]University of Stavanger, Stavanger, Norway

This paper proposes a framework for an efficient integration between geometric modeling program and analysis tool for a coming automated aerodynamic design optimization mission. This demand can be addressed by using both in-house codes and commercial software which have the good ability of live-link and efficient integration. In this study, the mathematical modeling of a turbomachinery airfoil ...

Electromagnetic Actuators Modeling, Simulation and Optimization

O. Craciun[1], V. Biagini[1], G. Mechler[1], G. Stengel[1], C. Reuber[2], A. van der Linden[3]
[1]ABB Corporate Research, Ladenburg, Germany
[2]ABB Calor Emag, Hanau, Germany
[3]COMSOL, Göttingen, Germany

Introduction: Medium voltage reclosers are representing nowadays an important link between transmission power systems and low voltage grids. With a high level of renewable energy penetration, the medium voltage networks are becoming bidirectional. Therefore, the associated switching devices must ensure the protection of newer types of power systems as well as new types of loads. The optimal ...

Use of COMSOL as a Tool in the Design of an Inclined Multiple Borehole Heat Exchanger

E. Johansson[1], J. Acuña[1], B. Palm[1]
[1]Royal Institute of Technology KTH, Stockholm, Sweden

A field of connected boreholes can be used both for cooling, heating and storage purposes. The boreholes transfer heat to or from the ground, which over time changes the temperature in the ground. It is important that the borehole field is properly sized and evaluated before the construction. This study presents results from borehole field evaluations of inclined boreholes used for cooling ...

Quick Search