Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Multiphysics Process Simulation of Static Magnetic Fields in High Power Laser Beam Welding of Aluminum

M. Bachmann[1], V. Avilov[1], A. Gumenyuk[1], M. Rethmeier[1]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany

The article deals with the application of the Hartmann effect in high power laser beam welding of aluminum. The movement of liquid metal in a magnetic field causes electric currents which build a Lorentz force that decelerates the original flow. The numerical model calculates the influence of a steady magnetic field on partial penetration keyhole laser beam welding of aluminum. Three-dimensional ...

3D Modeling of Urban Areas for Built Environment Applications Using COMSOL

J. van Schijndel[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

This paper presents the modeling and simulation results of wind velocities in urban areas. The main idea was to build random generated urban areas for studying the influence of different urban geometries, from relative open to more dense, on wind profiles. The Spalert-Allmaras turbulent flow model turned out to be suitable for domains up to 50 x 50 x 100 m^3. The k-? turbulence model provided ...

Model of an Interdigitated Electrodes System for Cell Counting Based on Impedance Spectroscopy

E. Bianchi[1][2], F. Bellati[1], E. Rollo[2], G. Dubini[1], C. Guiducci[2]
[1]Politecnico di Milano, LaBS, Laboratory of Biological Structure Mechanics, Milano, Italy
[2]Swiss Federal Institute of Technology (EPFL), Laboratory of Life Sciences Electronics - Swiss Up Chair, Lausanne, Switzerland

A model of a cell counter sensor based on Impedance Spectroscopy (IS) has been implemented in COMSOL Multiphysics. The cell counter is a silicon-based microdevice consisting in 3D electrodes placed in a wide microchannel: cells flow in the microchannel through the electrodes to be detected. The model allows to evaluate the functionality of the device depending on geometrical parameters and ...

Multiphysics Modeling of Warm-Air Drying of Potatoes Slices

S. Sandoval Torres[1], A. de Lourdes Allier González[1], L.L. Méndez Lagunas[1]
[1]Instituto Politécnico Nacional, CIIDIR, Oaxaca, Mexico

In this work we solve a model to simulate the drying of potatoes slices. The model considers both the transport of free and vapor water by applying a mechanistic approach. The critical moisture point (CMP) was considered, since it is a transition zone and it represents the point where water saturation is near from cero and hygroscopic domain begins. The CMP divides the hygroscopic and non ...

A Parametric Study on the Dynamic Behavior of Cable Supported Bridges Under Moving Loads Affected by Accidental Failure Mechanisms

P. Lonetti[1], A. Pascuzzo[1], R. Sarubbo[1]
[1]Department of Structural Engineering, University of Calabria, Rende, Cosenza, Italy

The dynamic behavior of cable supported bridges subjected to moving loads and affected by corrosion and accidental failure mechanism in the cable suspension system is investigated. The different types of cable supported bridges are distinctively characterized by the configuration of the cable system [1]. The suspension system comprises a parabolic main cable and vertical hanger cables connecting ...

Microscale Simulation of Nanoparticles Transport in Porous Media for Groundwater Remediation

F. Messina[1], M. Icardi[1], D. Machisio[2], R. Sethi[1]
[1]Politecnico di Torino - DIATI, Torino, Italy
[2]Politecnico di Torino - DISAT, Torino, Italy

Nanoscale zerovalent iron is a promising reagent for the remediation of contaminated groundwater. The aim of the study is to simulate the transport of iron nanoparticles and their interaction with the porous media, their attachment and deposition on the soil grains. The particles trajectories is determined by several forces, some of them are significance only close to grains surfaces where, ...

Simulation of an Ultrasonic Immersion Test for the Characterization of Anisotropic Materials

A. Castellano[1], P. Foti[1], A. Fraddosio[1], S. Marzano[1], M.D. Piccioni[1], D. Scardigno[1]
[1]DICAR, Politecnico di Bari, Bari, Italy

Introduction: Improving the capability of nondestructive evaluations requires the analysis of suitable models dealing with the physical and mechanical phenomena involved in the experiments. For example, ultrasonic tests may be a powerful, fast and effective method for nondestructive characterization of mechanical properties of materials. This requires the study of the related elastodynamic ...

Fracture-Matrix Flow Partitioning and Cross Flow: Numerical Modeling of Laboratory Fractured Core Flood

R. Sanaee[1], G.F. Oluyemi[1], M. Hossain[1], B.M. Oyeneyin[1]
[1]Robert Gordon University, Aberdeen, United Kingdom

The contrast between hydro-mechanical behavior of the rock matrix and fracture network systems results in flow partitioning between fracture and matrix systems which is affected by the In-situ stress regime. Fracture flow, Darcy law and free and porous media flow physics interfaces of COMSOL were used in simulating a fractured core flooding test to achieve a better understanding of flow ...

Multiphysics Modeling of Swelling Gels

A. Lucantonio[1], P. Nardinocchi[1], L. Teresi[2]
[1]Università degli Studi La Sapienza, Roma, Italy
[2]LaMS - Modelling & Simulation Lab, Università degli Studi Roma Tre, Roma, Italy

Polymer gels belong to the realm of soft active materials as they are capable of responding to a non-mechanical stimulus – the permeation of a solvent – with a mechanical action – a volume change, thanks to the coupling between different physics. This mechanism of coupling can be exploited in a wide range of applications, including biomedical devices, making crucial the understanding of the ...

Heat Transfer Modeling of Steam Methane Reforming

E. Carcadea[1], M. Varlam[1], I. Stefanescu[1]
[1]National Research Institute for Isotopic & Cryogenic Technologies, Rm.Vâlcea, Romania

Steam methane reforming is a widely studied process because of its importance for hydrogen production. A two-dimensional membrane-reactor model was developed to investigate the steam-methane reforming reactions. The use of membrane as membrane-reactor separator offer us few advantages because it help in continuously removing the hydrogen from the reaction zone, shifting the chemical equilibrium ...