Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Electromagnetic Analysis of an Optical Measuring Device Installed in a Transmission Line - new

C. Soares[1], N. Padoin[1], A. C. Zimmermann[1], G. Cunha[2], P. B. Uliana[2], M. Wendhausen[2]
[1]Federal University of Santa Catarina, Florianópolis, SC, Brazil
[2]PowerOpticks Technology Ltda, Florianópolis, SC, Brazil

In this study, COMSOL Multiphysics® software was applied to the investigation of the electromagnetic behavior of an optical crystal submitted to the magnetic field generated by electric current in a near positioned metallic conductor. Moreover, the influence of a ferromagnetic apparatus (magnetic concentrator) on the magnetic field acting upon the crystal was investigated. Three cases were ...

Verification and Time Performance Analysis of COMSOL v3.5a for Solving the Electromagnetic Problem in a Superconductor Slab

J. Lloberas[1], J. López[1], E. Bartolomé[2], and X. Granados[3]
[1]Universitat Politècnica de Catalunya, Barcelona, Spain
[2]Escola Universitària Salesiana de Sarrià, Barcelona, Spain
[3]Institut de Ciència de Materials de Barcelona, Barcelona, Spain

Numerical analysis based on finite element method (FEM) represents a powerful approach to solve electromagnetic problems. For instance, FEM methods have been broadly used to calculate the critical state current distribution in high temperature superconductors of various geometries. In the near future, we intend to develop a tool in COMSOL v3.5a for the analysis of power applications, such as ...

Study on the Holding Characterestics of a Magnetic Gripper

R. Wadhwa[1], G. Monkman[2], and T. Lien[1]
[1]NTNU Valgrinda, Inst. for produksjons- og kvalitetstek., Trondheim, Norway
[2]FH Regensburg, Regensburg, Germany

Magnetic grippers are commonly used for workholding in handling and assembly of ferrous metalcasted parts. The workholding force produced by the magnetic gripper is strongly influenced by the texture and form of the workpiece in contact with its surface. This work explores the optimal design of an electromagnet to handle parts of varying profile radii by increasing the magnetic field ...

Validation of Space Charge Laminar Flow in Diodes

M. Cavenago[1]
[1]INFN-LNL, Legnaro, Padova, Italy

The well known Pierce design of electron and ion diodes is the base of particle source extraction systems [1,2]. It was heavily studied up to 1960 with analog computing and it now offers us a known case against which to compare the precision of fluid and particle tracing codes. The ideal model assumes zero particle kinetic energy at cathode emission, which is well matched in many sources: the ...

Electric Field Density Distribution for Cochlear Implant Electrodes

N.S. Lawand[1], J. van Driel[2], P.J. French[2]
[1]Electronic Instrumentation Laboratory (EILab), Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), Delft University of Technology, Delft, The Netherlands
[2]Delft University of Technology, Delft, The Netherlands

Cochlear Implants are implantable devices which bypasses the non-functional inner ear and directly stimulates the hearing nerve with electric currents thus enabling deaf people to experience sound again. Implant electrode array design is limited in electrode count, due to their large size in accordance to scala tympani (ST) with restrictions for deeper insertion in ST thus depriving access to ...

Development and Optimization of a Microfluidic Device for Magnetic Field Induced Cell Separation

L. Helmich[1], A. Hütten[1]
[1]Bielefeld University, Bielefeld, Germany

Besides conventional laboratory analysis methods, so called micro-total-analysis devices (µTAS) have gained great interest during the last decades. In this work we demonstrate a mechanism for the separation and selection of medical samples that can be applied within these µTAS devices. Due to magnetic beads, which are bound to the cell surface, these biological samples become sensitive to ...

The Effects of a Superparamagnetic Ground on the EMI Response of a Target - new

A. T. Clark[1]
[1]Research & Development, WM Robots LLC, Colmar, PA, USA

Soil’s electromagnetic properties adversely affect the performance of electromagnetic induction (EMI) sensors and if conditions are severe enough, render them useless. A simple circuit model is often used to express the electromagnetic induction response of a target analytically. This analytic model produces a response function that contains unique characteristics based on the target’s ...

3D Multiphysics Modeling of Bulk High-Temperature Superconductors for Use as Trapped Field Magnets - new

M. Ainslie[1], J. Zou[1], D. Hu[1], D. Cardwell[1]
[1]Department of Engineering, University of Cambridge, Cambridge, UK

The authors are currently investigating the use of bulk high temperature superconductors as trapped field magnets (TFMs) in order to increase the electrical and magnetic loading of an axial gap, trapped flux-type superconducting electric machine. In electric machines, the use of superconducting materials can lead to increases in efficiency, as well as power density, which results in reductions ...

Design and Analysis of an Electrostatic Precipitator for a Diesel Particulate Filter - new

S. Manoj[1], R. Giri[1], S. Selvakumar[1]
[1]Rajalakshmi Engineering College, Chennai, Tamil Nadu, India

Gaseous exhaust of different industries contains dust particles of different chemical precipitates that are harmful for the environment. Electrostatic Precipitators are very often used in industries like power plant to filter their gaseous exhaust and to prevent the atmosphere to being polluted. Electrostatic Precipitators are very efficient in dust particle collection from the flue gas. ...

Nonlinear Ferrohydrodynamics of Magnetic Fluids

Markus Zahn
Massachusetts Institute of Technology, Cambridge, MA, USA

Markus Zahn received all his education at MIT, was a professor in the Department of Electrical Engineering at the University of Florida, Gainesville from 1970-1980, and then joined the MIT Department of Electrical Engineering and Computer Science faculty in 1980. He works in the Laboratory for Eelectromagnetic and Eelectronic Systems, in the MIT High Voltage Research Laboratory, is the Director ...