Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Electromagnetic Force Simulations on a Reaction Sphere for Satellite Attitude Control

L. Rossini[1], E. Onillon[1], O.Chetelat[1], and C. Allegranza[2]
[1]Centre Suisse d’Electronique et Microtechnique, Switzerland
[2]ESA/ESTEC, The Netherlands

In the frame of an ESA project, CSEM in collaboration with other partners has developed an innovative Attitude Orbit Control System concept that relies on a Reaction Sphere. We propose to use one unique magnetic bearing Reaction Sphere whose spin axis and angular velocity can be positioned by dedicated control. The design is based on a 3-D permanent magnet motor obtained with a multi pole rotor ...

Simulation and Verification of a Capacitive Proximity Sensor

T. Schlegl, and H. Zangl
Graz University of Technology
Graz, Austria

State of the art proximity sensors are most often based on optical or tactile methods. Although these sensor systems are widely used (e.g. clamping protection) the reveal several drawbacks. Most optical sensors need a line of side whereas tactile sensors cannot be used to determine a distance to an approaching object. Capacitive sensing technology has proven to be an interesting alternative to ...

Numerical Calculation of the Dynamic Behavior of Asynchronous Motors with COMSOL Multiphysics

J. Güdelhöfer[1], R. Gottkehaskamp[1], A. Hartmann[1]
[1]Department of Electrical Machines and Electromagnetic Field Theory, University of Applied Sciences Düsseldorf, Düsseldorf, Germany

This paper shows how a time-dependent and non-linear simulation of the dynamic operation behavior of an induction machine is executed by means of the \"Rotating Machinery\" interface from COMSOL Multiphysics 4.2a. The two-dimensional FEM model is connected to electrical circuits by coupling the physics \"Rotating Machinery\" and \"Electrical Circuit\" interfaces. These circuits include the lumped ...

Impedance measurements in reinforced concrete and 3D FEM simulations

Nogueira, A.1, Nóvoa, X.R.1, Keddam, M.2, Vivier, V.2
1 Universidade de Vigo (E.T.S.E.I.) Spain
2 UPR 15 CNRS “LISE”, case 133 - Université P. & M. Curie, Paris, France

The electrochemical impedance spectroscopy (EIS) measurements in reinforced concrete are reported and compared with 3D-finite element simulations with FEMLAB software. It was shown that the current injected in the cement past was partially collected by the reinforcement. Moreover, from both experimental results and calculations, it was shown that the fraction of current collected depends on the ...

Development of an On-Line Wall-Fouling Sensor for Pipeline Transportation of Heavy Oil-Water Mixtures

S. Rushd[1], and R.S. Sanders[1]
[1]Chemical & Materials Engineering Department, University of Alberta, Edmonton, AB, Canada

A beneficial method for transporting highly viscous hydrocarbons (e.g. heavy oil and bitumen) through a pipeline is known as Lubricated Pipe Flow (LPF). A major challenge for this technology is flow instability caused by the formation of a wall-coating of oil or the thinning and/or loss of the lubricating water layer in the pipe. This issue can be addressed by using capacitance sensors to measure ...

Skewing For Both Cogging Torque Components In Permanent Magnet Machines

D.R. McIntosh
Sonsight Inc., Accokeek, MD, USA

The current paper describes how a properly chosen skew angle can be used to significantly decrease the amplitude of the high and/or low frequency cogging torque components. The approach is further demonstrated with the help of FE results from COMSOL Multiphysics. The numerical analyses incorporates a COMSOL model that is similar to a combination of two examples from the AC/DC Model Library: the ...

Analysis of Multiconductor Quasi-TEM Transmission Lines and Multimode Waveguides

S.M. Musa[1], M.N.O. Sadiku[1], and O.D. Momoh[2]
[1]Prairie View A&M University, Prairie View, TX, USA
[2]Indiana University-Purdue University, Fort Wayne, IN, USA

This paper presents an analysis approach of multicondcutor quasi-TEM lines transmission interconnect in a single dielectric region and multimode waveguides using the finite element method (FEM). FEM is especially suitable and effective for the computation of electromagnetic fields in strongly inhomogeneous media. We illustrate that FEM is suitable and effective as other methods for modeling of ...

Simulation And Verification Of Thomson Actuator Systems

A. Bissal, G. Engdahl, E. Salinas, and M. Ohrstrom
ABB / KTH, Stockholm, Sweden

The Thomson coil’s (TC) inherent characteristics are appropriate to meet the needs of high speed actuators for mechanical switching devices in so-called smart grids. This is due to the massive forces that it can exert in the time scale of milliseconds. A coupled COMSOL Multiphysics model is developed in 2D involving spice circuits, Magneto-statics, and Moving Mesh Mode for predicting the motion ...

Magnetic and Circuital Modeling of a Low Harmonic Pollution Three Phase Transformer

E. Scotoni[1], C. Tozzo[2], D. Zoccarato[1], F. Paganini[1]
[1]TMC Italia, Busto Arsizio, Italy
[2]COMSOL, Brescia, Italy

A three phase transformer with very low harmonic pollution transferred back to power line is here presented. In fact, thanks to the described setup, intermediate harmonics (5th and 7th) are not going out back to the power line feeding the primary. These results has been extensively validated versus measurements performed on produced and shipped machine. With these results, TMC is then featuring ...

Finite Element Approach for 2D Micromagnetic Systems

H. Szambolics1, L. Buda-Prejbeanu2, J. C. Toussaint1,2, and O. Fruchart1
1Institut Néel, CNRS-INPG-UJF, Grenoble, France
2Laboratoire SPINTEC, CEA-CNRS-INPG-UJF, Grenoble, France

The imbalance between the four fundamental magnetic interactions (the magneto-crystalline anisotropy, the exchange and magnetostatic interactions, and the Zeeman coupling) is responsible for a very large diversity of magneticbehaviors that researchers try to explore anduse for technical applications (data storage,sensors, memories, medical imaging …).In this work, a finite element formalism ...

Quick Search