Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Finite Element Modeling of a Pulsed Spiral Coil Electromagnetic Acoustic Transducer (EMAT) for the Testing of Plates

R. Dhayalan[1], A. Kumar[2], B. Purnachandra Rao[3], T. Jayakumar[2]
[1]Metallurgy and Material Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN, India
[2]Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN, India
[3]Ultrasonic Measurements Section, Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN, India

This paper presents numerical simulation of plate wave modes in thin stainless steel plates using a racetrack spiral coil electromagnetic acoustic transducer (EMAT), which works under the principle of acousto-elastic effect, called Lorentz force mechanism. EMATs are useful for non-contact ultrasonic nondestructive testing (NDT) of metallic materials for detecting defects and measuring thickness. ...

Surface Plasmon Resonance Sensors: Optimization of Diffraction Grating and Prism Couplers

W. Raja[1], A. Alabastri[1], S. Tuccio[1], R. Proietti Zaccaria[1]
[1]Department of Nanostructures, Istituto Italiano di Tecnologia, Genova, Italy

Surface plasmon resonance (SPR) sensors proved themselves as a promising device for many kinds of applications such as optical biosensing, binding constant determinationor nanofilm thickness measurements. Here we simulate using COMSOL Multiphysics® the light-polaritons coupling for the two most commonly used SPR setups: Attenuated total reflection (Kretschmann configuration) and diffraction ...

Accurate geometry factor estimation for the four point probe method using COMSOL Multiphysics

Kalavagunta, A., Weller, R.A.
Vanderbilt University, Nashville, TN

The four-point probe is a tool for measuring the resistivity of a material by contact with its surface. The tool is widely used in the semiconductor industry and has applications both in research and manufacturing. The method though is quite sensitive to various paramaters like the substrate material, probe separation, probe depth etc. In this paper we show that COMSOL multiphysics can be used ...

Thermal Analysis of Induction Furnace

A. A. Bhat[1], S. Agarwal [1], D. Sujish[1], B. Muralidharan[1], B. P. Reddy[1], G. Padmakumar[1], K. K. Rajan[1]
[1]Indira Gandhi Center for Atomic Research, Kalpakkam, Tamilnadu, India

Induction furnaces are employed for vacuum distillation process to recover heavy metals after electro-refining operation. Induction furnace of suitable heating rate and cooled by passive means are required to be developed for this purpose. It is planned to set up a mock up induction furnace which will simulate the conditions to be realized in actual vacuum distillation furnace for this purpose. ...

Characterization of a 3D Photonic Crystal Structure Using Port and S-Parameter Analysis

M. Dong[1], M. Tomes[1], M. Eichenfield[2], M. Jarrahi[1], T. Carmon[1]
[1]University of Michigan, Ann Arbor, MI, USA
[2]Sandia National Laboratories, Albuquerque, NM, USA

We present a 3D port sweep method in a lossy silicon photonic crystal resonator to demonstrate the capabilities of COMSOL Multiphysics® for frequency domain analysis with input and output ports. This method benefits from the advantages of the S-parameter analysis to characterize the input and output coupling into the resonator. By pumping one end of the cavity with a CW plane wave, we are able ...

A Novel Mechanical Stress Measurement Method Applied to Wind Turbine Rotor Blades

A.H. Hegab[1], J.P. Kaerst[1]
[1]HAWK, University of Applied Sciences and Arts, Goettingen, Germany

Rotor blades for wind turbines are made of GFRP material. They have to be designed to withstand wind and weather over their approximately 20 years of lifetime. The ability to monitor the mechanical stress is crucial in order to reduce maintenance costs and to maximize operational availability. This paper presents the combination of SPICE® and COMSOL Multiphysics®, in order to reduce ...

Research on a Numerical Simulation Method about Harmonic Distortion of Loudspeaker - new

X. Lu[1]
[1]Zhejiang Electro-Acoustic R&D Center, CAS, Zhejiang, China

扬声器的失真问题一直受电声业界的关注,尤其是谐波失真,它是影响扬声器重放声音音质的主要因素之一。 本文提出了一种基于 COMSOL Multiphysics® ...

Conductivity Effects in Electrical Tomography Systems

K.J. Alme [1], and S. Mylvaganam [2]
[1] Telemark Technological R&D Centre (tel-tek),Norway
[2] Telemark University College, Faculty of Technology, Norway

Electrical tomography systems estimate the cross-sectional distribution of an object by performing boundary measurements. These non-invasive measurements are sensitive to the electrical properties of the objects under investigation. The main focus in this paper is how to model these sensor systems using COMSOL Multiphysics. Results due to increasing conductivity and their effect on the ...

Design of Light Emitting Diodes (LED)

E. Baur, M. Sabathil, and N. Linder
Osram Opto Semiconductors GmbH, Regensburg, Germany

For a proper design shaping of light emitting diodes, the exact knowledge of the current distribution in the active area is essential. On the one hand, one has to achieve a uniform current density over the chip area, on the other hand, one has to avoid current crowding in the neighborhood of the electrical contacts. In this paper it is shown first how a LED can be modeled by COMSOL Multiphysics. ...

Analysis of the Electric Field and the Potential Distribution in Cavities Inside Solid Insulating Electrical Materials

T. Seghir[1], D. Mahi[1],T. Lebey[2], and D. Malec[2]
[1] Materials Laboratory, Electrical Engineering Institute, Amar Thelidji University of Laghouat, Algeria
[2] Electrical Engineering Laboratory, University of Paul Sabatier, Toulouse

Solid extruded polymeric materials such as crosslinked polyethylene are widely used in the electrical insulation of underground high voltage power transmission cables. This paper treats the combined effect of space charge and cavities, on the electric field, and potential and temperature distribution within the insulation. The model is a 3D stationary linear COMSOL Multiphysics model and the ...

Quick Search