Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

The Simulation of Electric Field Distribution in Electrospinning Process - new

Y. Zheng[1], B. Xin[2]
[1]Donghua University, Shanghai, China
[2]Shanghai University of Engineering Science, Shanghai, China

The electric field plays a very important role in the electrospinning process, which needs to be seriously considered in the electrospinning configuration developing. High voltage involved in electrospinning process leads to difficulty in measuring the electric field. Numerical simulation is used to design the electric field, and experiments are carried out to validate the spinneret and ...

2D Simulation of Cardiac Tissue - new

S. Esfahani[1]
[1]University of South Florida, Tampa, FL, USA

A two-dimensional atrial tissue model has been constructed in COMSOL Multiphysics® software to study the propagation of action potential and electrograms. The model presents the atrial electrograms recorded with a mapping catheter. A 2D atrial tissue model is simulated using the Courtemanche et al. cell model equations. PDE in coefficient form was used in COMSOL Multiphysics® to reproduce the ...

Prediction of Noise Generated by Electromagnetic Forces in Induction Motors - new

M. K. Nguyen[1], R. Haettel[2], A. Daneryd[2]
[1]KTH, Stockholm, Sweden
[2]ABB Corporate Research,Västerås, Sweden

Induction motors, as any other industrial products, have to comply with various requirements on noise levels. Therefore, it is essential to use an appropriate prediction tool to verify and optimize the design of an induction motor with respect to the acoustic performances. The paper will focus on the prediction of the magnetic noise generated and radiated by a specific motor. The challenge is ...

3D Multiphysics Model of Thermal Flow Sensors - new

C. Falco[1], A. De Luca[1], S. Sarfraz[1], F. Udrea[1]
[1]University of Cambridge, Cambridge, UK

The aim of this work is to present a model capable to describe the behaviour of a thermal flow sensor under every physical aspect. A generic thermal flow sensor relates the flow properties with a variation in the temperature profile inside the device itself. Thus, it is locally heated up with a resistive element biased with an external current, surrounded by one or more temperature sensing ...

Optimization of Artificial Diffusion Stabilization Techniques and Corresponding Mesh Density Distribution in Drift Dominated Transport of Diluted Species

J. Jadidian[1], M. Zahn[1], N. Lavesson[2], O. Widlund[2], K. Borg[2]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA
[2]ABB Corporate Research, Västerås, Sweden

This paper presents an optimized combination of artificial diffusion techniques to stabilize a drift dominated streamer discharge model which includes COMSOL Multiphysics’ Transport of Diluted Species modules for positive ion, negative ion, and electron charge densities, coupled through the Electrostatic module. A Thermal Conduction and Convection module is responsible for the heat transfer in ...

A Novel Mechanical Stress Measurement Method Applied to Wind Turbine Rotor Blades

A.H. Hegab[1], J.P. Kaerst[1]
[1]HAWK, University of Applied Sciences and Arts, Goettingen, Germany

Rotor blades for wind turbines are made of GFRP material. They have to be designed to withstand wind and weather over their approximately 20 years of lifetime. The ability to monitor the mechanical stress is crucial in order to reduce maintenance costs and to maximize operational availability. This paper presents the combination of SPICE® and COMSOL Multiphysics®, in order to reduce ...

Prediction of Transformer Core Noise - new

R. Haettel[1], A. Daneryd[1], M. Kavasoglu[1], C. Ploetner[2]
[1]ABB Corporate Research, Västerås, Sweden
[2]ABB Transformers, Varennes, QC, Canada

Today, low noise is a mandatory feature for power transformers to comply with customer specifications and environmental regulations. Therefore, it is crucial to develop sound prediction tools with sufficient accuracy to avoid overkill margins in design and costly modifications after transformer completion. The paper will focus on core noise which is a typical multiphysics phenomenon involving ...

Homogenization Approaches for Laminated Magnetic Cores Using the Example of Transient 3D Transformer Modeling

H. Neubert[1], J. Ziske[1], T. Heimpold[1], R. Disselnkötter[2]
[1]Technische Universität Dresden, Institute of Electromechanical and Electronic Design, Germany
[2]ABB AG, Corporate Research Center Germany, Ladenburg, Germany

A specific issue in transformer modeling using the finite element method is the consideration of electric sheets or other laminated core materials which are used to reduce eddy currents. It would be impractical to explicitly model a large number of sheets as this would lead to a large number of elements and hence to unacceptable computational costs. Homogenization procedures overcome this ...

Finite Element Modeling of a Pulsed Spiral Coil Electromagnetic Acoustic Transducer (EMAT) for the Testing of Plates

R. Dhayalan[1], A. Kumar[2], B. Purnachandra Rao[3], T. Jayakumar[2]
[1]Metallurgy and Material Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN, India
[2]Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN, India
[3]Ultrasonic Measurements Section, Nondestructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, TN, India

This paper presents numerical simulation of plate wave modes in thin stainless steel plates using a racetrack spiral coil electromagnetic acoustic transducer (EMAT), which works under the principle of acousto-elastic effect, called Lorentz force mechanism. EMATs are useful for non-contact ultrasonic nondestructive testing (NDT) of metallic materials for detecting defects and measuring thickness. ...

Comparing Isotropic and Anisotropic Brain Conductivity Modeling: Planning Optimal Depth-Electrode Placement in White Matter for Direct Stimulation Therapy in an Epileptic Circuit

L. C. Zaragoza[1], B. Hondorp[2], M. A. Rossi[3]
[1]ITESM, Monterrey, Mexico
[2]Rush Medical College, Chicago, IL, USA
[3]Rush University Medical Center, Chicago, IL, USA

The goal of our work was to calculate a patient-specific brain conductivity map for predicting the extent to which direct stimulation therapy can strategically propagate through pathological white matter. Our laboratory developed isotropic and anisotropic human brain finite element method (FEM) models derived from SPGR magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI), ...