Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Studying Crosstalk Trends for Signal Integrity on Interconnects using Finite Element Modeling

J. Grover[1], Dr. A. Gupta[1]
[1]Birla Institute of Technology and Science, Pilani-Pilani Campus,Rajasthan ,India

In high-speed digital design, strong electromagnetic coupling exists between adjacent transmission lines. This manifests itself in the form of crosstalk voltage induced on either line. Crosstalk is modeled in terms of capacitance and inductance matrices which are extracted using COMSOL Multiphysics®. Further, trends of crosstalk are observed with variations in dielectric constant of substrate, ...

An MHD Study of the Behavior of an Electrolyte Solution Using 3D Numerical Simulation

L. P. Aoki[1], H. E. Schulz[1], M. G. Maunsell[1]
[1]University of São Paulo, São Carlos, SP, Brazil

This article considers a closed water circuit with square cross section filled with an electrolyte fluid. The conductor fluid was moved using an electromagnetic pump, in which a permanent magnet generates a magnetic field and electrodes generate the electric field in the flow. Thus, the movement is a consequence of the magnetohydrodynamic (or MHD) effect. The model adopted here was derived from ...

Design of Light Emitting Diodes (LED)

E. Baur, M. Sabathil, and N. Linder
Osram Opto Semiconductors GmbH, Regensburg, Germany

For a proper design shaping of light emitting diodes, the exact knowledge of the current distribution in the active area is essential. On the one hand, one has to achieve a uniform current density over the chip area, on the other hand, one has to avoid current crowding in the neighborhood of the electrical contacts. In this paper it is shown first how a LED can be modeled by COMSOL Multiphysics. ...

VLSI Layout Based Design Optimization of a Piezoresistive MEMS Pressure Sensors using COMSOL Multiphysics

R. Komaragiri[1], Sarath. S.[1], N. Kattabomman[1]
[1]NIT Calicut, Kozhikode, Kerala

This paper focuses on the diaphragm design and optimization of a piezoresistive Micro Electro Mechanical System (MEMS) pressure sensor by considering Very Large Scale Integration (VLSI) layout schemes. The aim of these studies is to find an optimal diaphragm shape by Finite Element Method (FEM) using COMSOL®, which is most suitable for VLSI layout. Optimal diaphragm shape is a diaphragm shape ...

Modeling and Simulation of High Permittivity Core-Shell Ferroelectric Polymers for Energy Storage Solutions

N. Badi[1], R. Mekala[1]
[1]University of Houston, Houston, TX, USA

The dielectric properties of ferroelectric PVDF polymer embedded core-shell (Al-Al2o3) nanoparticle is simulated using COMSOL Multiphysics® software. Significant increase in electrical permittivity of the composite at percolation threshold (K = 2800) is achieved when compared to electrical permittivity of bare polymer (K = 12). Both Maxwell Garnett and Symmetric Bruggeman models gave an ...

Accurate geometry factor estimation for the four point probe method using COMSOL Multiphysics

Kalavagunta, A., Weller, R.A.
Vanderbilt University, Nashville, TN

The four-point probe is a tool for measuring the resistivity of a material by contact with its surface. The tool is widely used in the semiconductor industry and has applications both in research and manufacturing. The method though is quite sensitive to various paramaters like the substrate material, probe separation, probe depth etc. In this paper we show that COMSOL multiphysics can be used ...

Comparing Isotropic and Anisotropic Brain Conductivity Modeling: Planning Optimal Depth-Electrode Placement in White Matter for Direct Stimulation Therapy in an Epileptic Circuit

L. C. Zaragoza[1], B. Hondorp[2], M. A. Rossi[3]
[1]ITESM, Monterrey, Mexico
[2]Rush Medical College, Chicago, IL, USA
[3]Rush University Medical Center, Chicago, IL, USA

The goal of our work was to calculate a patient-specific brain conductivity map for predicting the extent to which direct stimulation therapy can strategically propagate through pathological white matter. Our laboratory developed isotropic and anisotropic human brain finite element method (FEM) models derived from SPGR magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI), ...

Effect of Electrical Field Distortion on Particle-Particle Interaction Under DEP

G. Zhang[1], Y. Zhao[1], J. Hodge[1], J. Brcka[2], J. Faguet[2], E. Lee[2]
[1]Clemson University, Clemson, SC, USA
[2]TEL U.S. Holdings, Inc., U.S. Technology Development Center, Austin, TX, USA

In using DEP for particle manipulation, researchers often use a formula to calculate the DEP forces in which the forces are proportional to the particle radius to the third power. This formula assumes that the electrical field, E, will not be affected by the presence of a particle, no matter what the actual size and the dielectric property of the particle are. This work confirms that the ...

Finite Element Modeling of Five Phase Brushless Motor for High Power Density Application

[1]M A College of Engineering, Electrical and Electronics, Kothamangalam, Ernakulam,Kerala, India
[2]ISRO, Electrical and Electronics, Trivandrum,Kerala, India

The demand for high reliability motor drives increases every day, especially in aircraft where traditional, nonelectric systems (hydraulic, pneumatic) are being replaced by electrical actuators following the More Electric Aircraft (MEA) trend. Its pursuing involves the adoption of protective design concepts such as fault-tolerant or redundant approaches, aiming to minimize mission failure ...

Finite Element Modeling of a Pulsed Eddy Current Probe for Steam Generator Tube Inspection

S. G. Mokros[1, 2], V. K. Babbar[1], T. W. Krause[1], J. Morelli[2]
[1]Department of Physics, Royal Military College of Canada, Kingston, ON, Canada
[2]Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, ON, Canada

Steam generator (SG) tubes in CANDU® nuclear reactors can lose efficiency in the presence of corrosion and its by-products. Condition monitoring of support structures could help direct maintenance activities and thereby increase SG tube lifetime. Pulsed eddy current (PEC) has been proposed as a method to non-destructively determine the presence of defects in support structures. COMSOL ...

Quick Search