Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Improved Perfectly Matched Layers for Acoustic Radiation and Scattering Problems

M. Zampolli[1], N. Malm[2], and A. Tesei[1]
[1]NURC NATO Research Centre, La Spezia, Italy
[2]COMSOL AB, Stockholm, Sweden

Perfectly matched layers (PML) are an efficient alternative for emulating the Sommerfeld radiation condition in the numerical solution of wave radiation and scattering problems. The key ingredient of the PML formulation is the complex scaling function, which controls the anisotropic damping of the PML. The objective of this study is to propose a modified complex scaling function capable of ...

Design and Simulation of SAW Device using MEMS Technology

P.R. Basha, B. Mishra, and A. Zachariah
School of Electronics Engineering, VIT University, Vellore, Tamil Nadu, India

The realization of miniature SAW device is compatible on CMOS device for mobile and wireless communication system has become very important in recent years. Acoustic wave propagation along the surface of a piezoelectric material provides a means of implementing a variety of signal processing devices at frequency ranging from several MHz to a few GHz. In this work, a Miniature SAW device is ...

A Study of Seismic Robot Actuation Using COMSOL Multiphysics

S.L. Firebaugh, E.A. Leckie, J.A. Piepmeier, and J.A. Burkhardt
United States Naval Academy, Annapolis, Maryland, USA

Microrobotics has promising applications in microsurgery and microassembly. A challenge in these systems is interfacing with the robot. This project explores crawling robots that are powered and controlled through a global mechanical vibration field. By controlling the frequencies present in the vibration field, the user can then steer the robot. The “robot” has a rectangular body with ...

Application of COMSOL to Acoustic Imaging

K. Mcilhany, and J.C Hernandez
U.S. Naval Academy, Annapolis, MD, USA

Acoustic Imaging of hand movement is being studied with COMSOL and Matlab. A hardware implementation is being pursued that will be an array of 16x16 ultra-sonic speakers placed in a grid facing a similar grid of 16x16 microphones, operating at 40kHz. COMSOL is used to repeatedly calculate the diffraction pattern from a small scattering center, approximately 1.0cm in diameter. In conjunction ...

Beam Structure As an Acoustic Wave Sensor: A Study of the Effect of Sensor Design on Its Sensitivity to Noise

F. Akasheh[1], A. Biddle[1], W.S. Shepard Jr.[2], and B.B.B. Zhang[2]
[1]Tuskegee University, Tuskegee, AL, USA
[2]University of Alabama, Tuscaloosa, AL, USA

The detection and identification of the location of a sound source is commonly done using arrays of microphones. A recent new alternative approach has been proposed which involves the use of continuous structures, such as beams or plates, as acoustic wave sensors. The sound wave impinging on the surface of the structure causes it to vibrate and the measured surface displacements can then be used ...

Virtual Acoustic Prototyping – Practical Applications for Loudspeaker Development

A. Salvatti
JBL Professional, Northridge, CA, USA

The author presents an overview of methods to build virtual prototypes of both horns and loudspeaker drivers which allows a significant reduction in the number of physical prototypes, as well as reduced development time. This paper will present some of the practical results from work the author has performed in the course of designing both transducers and horns using COMSOL Evolution of the ...

Design Of Acoustic Metamaterials Based On The Concept Of Dual Transmission Line

A-S.Moreau[1], H.Lissek[1], and F. Bongard[2]
[1]Ecole Polytechnique Fédérale de Lausanne, Switzerland
[2]JAST SA, Antenna Systems, Lausanne, Switzerland

In this context, a one-dimensional acoustic transmission line, exhibiting metamaterial properties, is presented. It is composed of an acoustic waveguide, periodically loaded with membranes having the function of series capacitances, as well as transversally connected open channels (denoted stubs) having the function of shunt inductances. A validation of the transmission line design is made with ...

Two-Dimensional FEM Analysis Of Brillouin Gain Spectra In Acoustic Guiding And Acoustic Antiguiding Single Mode Optical Fibers

Y.S. Mamdem[4], X. Pheron[2], F.Taillade[3], Y. Jaouën[4], R. Gabet[4], V. Lanticq[1,3], G. Moreau[1], A. Boukenter[5], Y. Ouerdane[5], S. Lesoille[3], and J. Bertrand[2]
[1]EDF R&D, Chatou, France
[2]ANDRA, Chatenay-Malabry, France
[3]LCPC, Paris, France
[4]Telecom ParisTech, Paris, France
[5]Laboratoire Hubert Curien, Saint-Etienne, France

We present a full modal -analysis of optical and acoustic properties based on two-dimensional finite-element method (2D-FEM) for Brillouin Gain spectrum (BGS) determination in optical fibers with COMSOL. This model enables us to predict precisely the BGS of any kind of silica fiber knowing well the geometry of doping composition. The results of numerical modeling have shown good agreement in ...

Numerical Modelling Of Sound Absorptive Properties Of Double-Porosity Granular Materials

R. Venegas, and O. Umnova
Acoustics Research Centre, University of Salford, Salford, United Kingdom

Granular materials have been conventionally used for acoustic treatment due to their sound absorptive and sound insulating characteristics. An emerging field is the study of acoustical properties of multi-scale porous materials. An example of these is a double-porosity granular material in which the grains are porous themselves. In this work, a computational methodology for modelling this type ...

Effects Of The Microstructure Of Fibrous Media On Their Acoustic Properties

C. Peyrega, and D. Jeulin
Center of Mathematical Morphology, Mines ParisTech, Fontainebleau, France

This study is a part of the Silent Wall ANR project, to which the Center of Mathematical Morphology is associated. Its main objective is to build an acoustical and thermal insulating system for buildings, composed of fibrous materials. The material is composed of two phases: the fibrous network and the air surrounding it. At the microscopic scale the absorption of the acoustic wave is mainly due ...

Quick Search