Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Designing Materials for Mechanical Invisibility Cloaks

P. Olsson[1], F. Larsson[1], A. Khlopotin[1], S. Razanica[1]
[1]Chalmers University of Technology, Gothenburg, Sweden

In solid mechanics, there is considerable interest in achieving “invisibility”. The applications in mechanics include protection of structures and parts of structures from potentially harmful transient waves and steady state vibrations. A suggested large scale application is that protection against seismic waves from earthquakes could be achieved by using cloaking to re-route the waves around ...

Two- and Three-Dimensional Holey Phononic Crystals with Unit Cells of Resonators

Y.F. Wang[1][2], Y.S. Wang[1], L. Wang[2]
[1]Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing, China
[2]Department of Mechanical Engineering, Østfold University College, Halden, Norway

We show in this paper that by careful design of the geometry of the resonators, complete bandgap with relatively low center frequency can be obtained for 2D and 3D Phononic Crystals with resonators. The generation of the bandgap is due to the local resonance of the unit cell. Spring-mass and spring-pendulum models are developed to predict the boundaries of the complete bandgap. The predicted ...

Modeling and Simulation of MR Dampers Using COMSOL Multiphysics® Software

Y. M. Khedkar[1], S. B. Joshi[2], P. M. Pawar[1], B. P. Ronge[1]
[1]SVERI's College of Engineering, Pandharpur, Maharashtra, India
[2]Brahmdevdada Mane Polytechnic, Solapur, Maharashtra, India

Classical hydraulic dampers are flexible devices that are used to attach a component to a mounting base. Vibration amplitude reduction can be achieved by improving the old technique of suspension by bringing in application of Magnetorheological or Electrorheological fluid in it. Due to the controllable characteristics of the material used in the classical hydraulic damper, the design and ...

Electro-acoustic Coupling in Nematic Liquid Crystals

G. Rosi[1], L. Teresi[1], A. DiCarlo[1], and F. dell'Isola[2]
[1]LaMS - Università degli Studi Roma Tre, Roma, Italy
[2]Università degli Studi di Roma "La Sapienza", Roma, Italy

Liquid crystals - as all liquids - are generally modelled as incompressible media. In fact, mass-density changes occurring in these mesophases are minuscule and inconsequential in most regimes of interest. However, liquid crystals exhibit also phenomena that call for a more refined theory. In particular, it is experimentally well established that the Fréedericksz transition - i.e., the sudden ...

Simulation Analysis of Acoustic Radiation Force under Ultrasound Exposure and Effect to Microbubbles in Flow

T. Ito
Masuda Laboratory
Tokyo University of Agriculture & Technology

This paper is in Japanese.

Quartz Transducer Modeling for Development of BAW Resonators

L.B.M. Silva[1], E.J.P. Santos[1]
[1]Laboratory for Devices and Nanostructures, Electronics and Systems Department, Universidade Federal de Pernambuco, Recife, PE, Brasil

Transducer optimization is a key aspect for successful development and deployment of advanced sensors, especially when designing 3D structures for harsh environments. For piezoelectric transducers, plate thickness determines the operating frequency of the resonator, which is frequently tuned in the shear thickness vibration mode. Quartz has been the material of choice for the fabrication of bulk ...

Near-Wall Dynamics of Microbubbles in an Acoustical Trap - new

L. Wright[1], G. Memoli[1], P. Jones[2], E. Stride[3]
[1]National Physical Laboratory, Teddington, UK
[2]University College London, London, UK
[3]University of Oxford, Oxford, UK

Understanding the interactions between microbubbles and surfaces is key to the successful deployment of microbubbles in a range of applications. Two important examples are their use as a drug delivery mechanism, and their potential use of acoustically-driven bubbles as microscale sensors. Drug delivery with bubbles involves sonication at high frequency close to a boundary, and sensing with ...

Design Of Acoustic Metamaterials Based On The Concept Of Dual Transmission Line

A-S.Moreau[1], H.Lissek[1], and F. Bongard[2]
[1]Ecole Polytechnique Fédérale de Lausanne, Switzerland
[2]JAST SA, Antenna Systems, Lausanne, Switzerland

In this context, a one-dimensional acoustic transmission line, exhibiting metamaterial properties, is presented. It is composed of an acoustic waveguide, periodically loaded with membranes having the function of series capacitances, as well as transversally connected open channels (denoted stubs) having the function of shunt inductances. A validation of the transmission line design is made with ...

Comsol’s New Thermoviscous Interface and Computationally Efficient Alternative Formulations for FEM

W. R. Kampinga[1], and Y. H. Wijnant[2]
[1]Reden, Hengelo, Netherlands
[2]University of Twente, Enschede, Netherlands

Three efficient alternatives to the model in COMSOL’s thermoacoustics interface are presented. The higher efficiency of these models are explained from theory and are demonstrated by means of two examples.

Computational Acoustic Attenuation Performance of Helicoidal Resonators

W. Lapka
Poznan University of Technology
Poznan, Poland

This paper concerns the problem of obtaining proper acoustic attenuation performance through computations. COMSOL was used to solve acoustics systems with helicoidal resonators in the frequency domain. Based on the studies of insertion and transmission loss of helicoidal resonators, a high consistency between the results obtained by numerical calculations with experimental measurements was ...

Quick Search