Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Piezoelectric Nanofibers for Harvesting Energy Applications - new

S. Rouabah[1], A. Chaabi[1]
[1]Electronics Department, Constantine University, Constantine, Algeria

In this work, we have taken a model which is simulated using COMSOL Multiphysics®. It was used as a tool to design, characterize and to simulate an example which is nanofibers based piezoelectric energy generators. The results are compared with other available sources but using with another materials. After applying a pressure on the top of surface of nanogenerator, the output parameters ...

Effects of Fluid and Structural Forces on the Dynamic Performance of High Speed Rotating Impellers.

C. Thiagarajan[1], G. Shenoy[2], B. S. Shenoy[3]
[1]ATOA Scientific Technologies Pvt Ltd, Whitefield, Bangalore, India.
[2]Department of Mechanical & Manufacturing Engineering, Manipal Institute of technology, Manipal, India
[3]Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal, India

Vibration and Dynamic performances of the rotating machinery are conventionally evaluated based on the dominant structural forces such as the centrifugal forces. The increase in rotational speed, miniaturization and performance, demands for improved and accurate evaluation of the vibration performance. The inclusion of coupled effects of fluid and centrifugal forces can contribute significantly ...

Prediction of Transformer Core Noise - new

R. Haettel[1], A. Daneryd[1], M. Kavasoglu[1], C. Ploetner[2]
[1]ABB Corporate Research, Västerås, Sweden
[2]ABB Transformers, Varennes, QC, Canada

Today, low noise is a mandatory feature for power transformers to comply with customer specifications and environmental regulations. Therefore, it is crucial to develop sound prediction tools with sufficient accuracy to avoid overkill margins in design and costly modifications after transformer completion. The paper will focus on core noise which is a typical multiphysics phenomenon involving ...

Increasing Heat Transfer in Microchannels with Surface Acoustic Waves - new

S. Berry[1]
[1]Massachusetts Institute of Technology: Lincoln Laboratory, Lexington, MA, USA

In this numerical study, surface acoustic waves (SAWs) are evaluated as a potential disruptive flow technology for enhancing heat transfer in microchannels. Using COMSOL Multiphysics® software, the physics governing acoustics, single-phase-fluid flow and heat transfer are coupled. The results show that acoustic streaming can disrupt the bulk fluid flow, creating rotating vortices within the ...

Dynamic Characterization and Mechanical Simulation of Cantilevers for Electromechanical Vibration Energy Harvesting

N. Alcheick[1], H. Nesser[1], H. Debeda[1], C. Ayela[1], I. Dufour [1]
[1]Univ. Bordeaux, IMS Lab, Pessac, France

Energy harvesting from ambient vibrations has become an interesting topic for powering wireless sensor networks. Resonant microdevices based on MEMS have become of central importance at low frequency. The power produced at resonance is at least one order of magnitude larger than off frequency power since the largest strain is obtained at resonance. In order to obtain large strain for efficient ...

An Improved Loudspeaker Frequency Response by Using a Structure of Rigid Absorptive Panel in a Vented Cabinet - new

R. Balistreri[1]
[1]Community Light & Sound Inc., Chester, PA, USA

When placing a loudspeaker in a cabinet, standing waves inside the cabinet affect the frequency response with ripples. This peaks and dips due to pressure cancellation inside the cabinet have an effect on the diaphragm and generating sound out from the vents. If it was in a condition of total absorption of the sound waves at the back of the diaphragm, the transducer would otherwise have a much ...

Analyzing Muffler Performance Using the Transfer Matrix Method 

K. Andersen
Dinex Emission Technology A/S, Middelfart, Denmark

Exhaust noise must meet legislation targets, customer expectations and cost reduction which call for design optimization of the exhaust systems in the design phase. One solution is to use 3 dimensional linear pressure acoustics and calculate the transfer matrix of the muffler. The transfer matrix is the basis for calculating either the insertion loss or transmission loss of a muffler. The 3D ...

Modal Analysis of Functionally-Graded Metal-Ceramic Composite Plates - new

E. Gutierrez-Miravete[1], W. L. Saunders II[2], K. Pendley[3]
[1]Rensselaer at Hartford, Hartford, CT, USA
[2]General Dynamics Electric Boat, Groton, CT, USA
[3]United Technologies - Pratt & Whitney, East Hartford, CT, USA

The determination of the modes of vibration of Functionally Graded-Metal-Ceramic Composite plates is important in practice in order to prevent undesired resonances in structural components. This paper describes the application of COMSOL Multiphysics® software for the determination of the modes of vibration of Aluminum A356-T6Alloy-ZrO2 FG-MCC square plates.

Complete Modeling of a Vented Box Loudspeaker in COMSOL Multiphysics® - new

R. Vaucher[1]
[1]NEXO, Plailly, France

This paper describes the use of COMSOL Multiphysics® during the design of a vented box loudspeaker. Templates have been created to model the different needs of a complete design. Based upon those templates a box has been prototyped, measured and confronted to simulation. The cabinet may be described as a vented box design, featuring two low frequency drivers mounted in a "V Shape" with a horn ...

Modeling the Sound Radiation by Loudspeaker Cabinets - new

M. Cobianchi[1], M. Rousseau[1]
[1] B&W Group Ltd, Steyning, UK

While musical instruments often rely on a body which resonates on purposefully to amplify the vibration produced by a string or a membrane, such as in a violin or a guitar, loudspeaker cabinets should not contribute at all to the total sound radiation, but aim instead to be a perfectly rigid box which encloses the drive units in charge to transform the electrical signal at their terminal into ...