Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Development of a Reactive Silencer for Turbo Compressors

J. Smeulers[1], N. Gonzalez Diez[1]
[1]TNO, Delft, The Netherlands

Turbo compressors can generate high frequency tonal noise, causing nuisance in the environment. As the noise is radiated from the piping, a silencer is installed between the compressor and the pipe system. Commonly an absorption silencer is applied, which is a vessel that contains acoustic absorption material. Due to high flow velocities and vibrations the absorption material may be blown out of ...

An Investigation of Loudspeaker Simulation Efficiency and Accuracy Using i) A Conventional Model, ii) The Near-To-Far-Field Transformation and iii) The Rayleigh Integral

R. Christensen[1], U. Skov[1]
[1] iCapture ApS, Roskilde, Denmark

Simulation on loudspeaker drivers require a conventional fully coupled vibro-acoustic model to capture all effect. An accurate vibroacoustic model can be time-consuming to solve, especially in 3D. In practical applications, this results in poor efficiency concerning the decision-making process to move on to the next simulation model. To overcome this the loudspeaker designer can use either the ...

Effects of Fluid and Structural Forces on the Dynamic Performance of High Speed Rotating Impellers.

C. Thiagarajan[1], G. Shenoy[2], B. S. Shenoy[3]
[1]ATOA Scientific Technologies Pvt Ltd, Whitefield, Bangalore, India.
[2]Department of Mechanical & Manufacturing Engineering, Manipal Institute of technology, Manipal, India
[3]Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal, India

Vibration and Dynamic performances of the rotating machinery are conventionally evaluated based on the dominant structural forces such as the centrifugal forces. The increase in rotational speed, miniaturization and performance, demands for improved and accurate evaluation of the vibration performance. The inclusion of coupled effects of fluid and centrifugal forces can contribute significantly ...

Modeling and Simulation of Piezoelectric Materials for Comparison to Experimental Data

E. Nesvijski[1,2], R. Sahul[2]
[1]Western New England College, Springfield, MA, USA
[2]TRS Technologies, State College, PA, USA

Finite element analysis (FEA) is a modern tool for exploration of new horizons in science, technology and engineering. Different computer software such as ANSYS, ABACUS, PZFLEX and COMSOL Multiphysics® based on FEA are used for modeling and simulation of acoustic phenomena, for design of new and optimization and improvement of existing acoustic engineering systems. This work presents application ...

Numerical Simulation of Phonon Dispersion Relations for Phononic Crystals

G. Zhu[1], E.M. Dede[1]
[1]Toyota Research Institute of North America, Ann Arbor, MI, USA

In previous work, a two-dimensional (2D) model was carried out to simulate the phononic band structure of a phononic crystal with square lattice structure, but this model did not account for the out-of-plane phonon dispersions [1]. In fact, for 2D films used for coating materials, it is more interesting to understand their cross-plane properties. In this work, the phonon dispersion relation of 2D ...

Investigation on Sensor Fault Effects of Piezoelectric Transducers on Wave Propagation and Impedance Measurements

I. Buethe[1], C.-P. Fritzen[1]
[1]University of Siegen, Institute of Mechanics and Control Engineering-Mechatronics, Siegen, Germany

For active Structural Health Monitoring (SHM), one popular sensor type is the piezoelectric wafer active sensor (PWAS) due to its multi-purpose application as actuator and sensor and its low cost. It is used to generate a wave field, which interacts with the structure and is recorded by a second set of PWASs. This method is called acousto ultrasonics. The change in wave field from transducer ...

A Study into the Acoustic and Vibrational Effects of Carbon Fiber Reinforced Plastic as a Sole Manufacturing Material for Acoustic Guitars

J. O'Donnell[1], G. McRobbie[1]
[1]University of the West of Scotland, Paisley, Scotland, United Kingdom

This study will research a modern design of acoustic guitar by analysis of the vibrational modes. The guitar that will undergo testing has been provided by Emerald Guitars and is solely constructed using Carbon Fiber Reinforced Plastic (CFRP). With the use of COMSOL Multiphysics© the soundboard of the guitar will be simulated and analysis will be carried out to determine the first 10 ...

Modeling Scattering from Rough Poroelastic Surfaces Using COMSOL Multiphysics®

A. Bonomo[1], M. Isakson[1]
[1]Applied Research Laboratories, The University of Texas at Austin, Austin, TX, USA

COMSOL Multiphysics® is used to address the problem of acoustic scattering from one-dimensional rough poroelastic surfaces. The poroelastic sediment is modeled following the Biot-Stoll formulation. The rough surfaces are generated using a modified power law spectrum. Both monostatic and bistatic scattering strengths are calculated. These results are compared with more conventional scattering ...

Analysis of Acoustic Response of Rooms

J.S. Crompton[1], L.T. Gritter[1], S. Yushanov[1], K.C. Koppenhoefer[1], and D. Magyari[2]
[1]AltaSim Technologies, LLC, Columbus, OH, USA
[2]Golden Acoustics, Detroit, MI, USA

The preferred acoustic response of recording studios, auditoriums and conference halls is to have an even energy response over the entire room and throughout full audio spectrum. This can be accomplished by using acoustic panels with complex surface structures that scatter acoustic waves and diffuse sound level variability over the room volume or through the use of sound absorbing materials to ...

High-Intensity Piezo-Ceramic Ultrasonic Transducer with Mechanical Amplifier and Radiation Plate

A. van Wijhe[1], W. de Jong[1]
[1]Process & Energy, 3mE, TU Delft, The Netherlands

A COMSOL Multiphysics® model was made to design a mechanical amplifier and radiation plate for the emission of high intensity 40.5 kHz ultrasound to air by means of a Langevin type transducer usually applied in cleaning baths for example. In this work, ultrasonic irradiation is aimed at acting on flue gas containing fine particulate matter to realize a shift to higher effective particle sizes as ...

Quick Search