Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Development of Tiny Fuel Cells for Micro-devices on the Basis of Simulation Results

S. Tominaka
International Center for Materials Nanoarchitectonics
National Institute for Materials Science
Japan

For the successful exploitation of microdevices such as microsensors, development of micro-power sources is strongly required. In this view, microbatteries and microfuel cells have been developed. Here the concept of on-chip fuel cells, which consist of all the components necessary for power generation integrated on a chip, is introduced. Then, in order to improve their performance, experimental ...

Tertiary Current Distributions on Rotating Electrodes

L. Tong
Kesoku Engineering System Co., Ltd.,
Japan

The tertiary current distributions on rotating electrodes are studied in this work. An acid copper sulfate electrolyte is used within an electrochemical cell of practical dimensions. The distributions of ion concentrations are obtained by the two-dimensional fluid flow simulation and the solution of mass-transport equations based on axial symmetry.

Modeling a Non-Flooding Hybrid Polymer Electrolyte Fuel Cell and Related Diffusion-Migration-Reaction Systems

B.E. McNealy[1], J.L. Hertz[1]
[1]University of Delaware, Newark, DE, USA

Introduction: Understanding the mass and charge transport behavior of heterogeneous systems that include diffusion, migration, and reaction of ions is important in fuel cells, batteries, and other electrochemical applications. Here, a numerical model for charged species transport and reaction has been developed to simulate the electrochemical behavior of a novel type of “non-flooding” hybrid ...

Numerical Modeling of Pit Growth in Microstructure

S. Qidwai[1], N. Kota[2], V. DeGiorgi[1]
[1]Naval Research Laboratory, Washington, DC, USA
[2]Science Applications International Corporation, Washington, DC, USA

Pitting corrosion is a complex phenomenon where rates of: i) chemical reactions, ii) diffusion of various species involve in those reactions, and iii) species dissolution at the metal-electrolyte interface are fully dependent on each other, except under special conditions or assumptions. One set of such conditions is that: a) there are no species concentration gradients due to the rapid mixing of ...

Numerical Simulation of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell

A. Aman[1], R. Gentile[1], Y. Chen[1], X. Huang[2], Y. Xu[1], N. Orlovskaya[1]
[1]Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
[2]Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

Solid oxide fuel cells (SOFCs) are electrochemical conversion devices that utilize ceramics as their electrolyte material for oxygen conduction. Compared to other types of fuel cells, they operate at relatively high temperatures, typically 400°C to 1000°C, and have an electrical efficiency over 50% and combined heat and power efficiency over 80%. One way to improve cell performance is to use ...

Modeling the Behavior of a Polymer Electrolyte Membrane within a Fuel Cell Using COMSOL

S. Beharry[1]
[1]University of the West Indies, St. Augustine, Trinidad and Tobago

One viable alternative to non-renewable fossil fuels is the fuel cell. A special class of FC i.e. Proton Exchange Membrane Fuel Cell (PEMFC) has been investigated during the present study. Membrane is a very important part of a PEMFC as most ohmic losses occurs here and limits the maximum operating temperature, causes fuel cross over effect and increase electrochemical kinetics losses resulting ...

Modeling the Effect of Discrete Distributions of Platinum Particles in the PEM Fuel Cell Catalyst Layer

C.F. Cetinbas[1], A.K. Prasad[2], S.G. Advani[1]
[1]Center for Fuel Cell Research, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
[2]University of Delaware, Newark, DE, USA

In this study, the basic catalyst layer (CL) structure, consisting of carbon-supported Pt particles (C|Pt) and an ionomer binder, is investigated numerically by using COMSOL. The significance of modeling discrete Pt particles on the carbon support is highlighted by comparing the cell performance results to the case in which the Pt is assumed to be distributed uniformly over the carbon support as ...

Multiphysics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell

K. Daneshvar[1], A. Fantino[1], C. Cristiani[1], G. Dotelli[1], R. Pelosato[1], M. Santarelli[2]
[1]Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Milano, Italy
[2]Politecnico di Torino, Dipartimento di Energetica, Torino, Italy

A 2D isothermal axisymmetric model of an anode-supported Solid Oxide Fuel Cell (SOFC) has been developed. Also a parametric analysis to find the effect of important parameters on the cell performance has been done. This simulation has been carried out at 1 atm and 1073 K. The PEN materials are traditional ones: Ni-YSZ/YSZ/LSM-YSZ as anode, electrolyte and cathode respectively.The developed model ...

Design and Simulation of Sensors to Detect Methanol

C. K. Subramaniam[1], Muthuraja[1]
[1]School of Electronics Engineering, VIT University, Vellore, Tamil Nadu, India

The Direct Methanol Fuel Cell (DMFC) working is dependent on the concentration of methanol in water before it is introduced in the anode. DMFC has a high energy density when generating electrical power from fuel, and is an attractive power source for portable devices. A fundamental limitation in DMFC technology is methanol crossover. In this process methanol diffuses from the anode through the ...

Design and Simulation of MEMS Based Piezoelectric Vibration Energy Harvesting System

M. C. B. Kumar[1], D. B. Prabhu[1], R. Akila[1], A. Gupta[1], M. Alagappan[1]
[1]PSG College of Technology, Coimbatore, Tamil nadu, India

This paper discusses the simulation studies on a vibration based energy harvesting system to convert the undesirable mechanical vibration to useful green power. The design consists of a resonating proof mass and a spring system enclosed in housing and fixed on the source of vibration. A piezoelectric suspension acts as the transducer and generates a voltage that is used to charge the batteries of ...

Quick Search