Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Meso-Scale Multiphysics Model of SOFC Cathode Processes

W. Huang, X. Huang, and K. Reifsnider
Connecticut Global Fuel Cell Center, University of Connecticut

Meso-scale structures significantly influence fuel cell performance and durability. We have modelled the multiphysics processes in the solid oxide fuel cell cathode-electrolyte interfaces considering the detailed distribution and geometry of the ionic conducting phase, the electronic conducting phase, and the pores. The model is solved using COMSOL Multiphysics and results provide ...

Modelling of Channel - Gas Diffusion Layer Systems

E. Holzbecher1, and S. Krumbholz2
1Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin, Germany
2Fraunhofer Institute for Reliability and Microintegration (IZM), Berlin, Germany

In several micro-technological applications, channel systems are connected with porous GDL layers. The general purpose of such systems is to deliver chemical substances, liquid or gaseous, to the reaction zone. Most prominent is the application in fuel cells, where fuel components are delivered to catalyst layers. There are innumerable options concerning the layout of such systems: straight ...

Simulating Performance and Species Crossover in a Vanadium Redox Flow Battery using COMSOL Multiphysics

E. Agar, K. Knehr, C. Dennison, and E. Kumbur
Electrochemical Energy Systems Lab.
Dept. of Mechanical Eng. and Mechanics
Drexel University
Philadelphia, PA

Vanadium redox flow batteries (VRBs) are a promising new energy storage technology designed for use in long term applications such as uninterruptible power supply and coupling with renewable energy sources (i.e. wind and solar). Crossover is the undesired transport of vanadium ions through the ion exchange membrane during operation and is a major factor limiting the overall efficiency and ...

Modeling of Charge Transport in Ion Bipolar Junction Transistors

A.V. Volkov[1], K. Tybrandt[1], I.V. Zozoulenko[1], M. Berggren[1]
[1]Organic Electronics, ITN, Linköping University, Norrköping, Sweden

Modeling of an ion bipolar junction transistor (IBJT) is performed using the COMSOL Multiphysics® software. Our model describes the IBJT which was developed and characterized [1]. The IBJT under consideration consists of an anion-selective collector and emitter, a cation-selective base and a neutral junction. The physical model is based on Poisson and Nernst-Planck (PNP) equations. A two ...

Computational Modelling of Fluid Dynamics in Electropolishing of Radiofrequency Accelerating Cavities - new

H. Rana[1], L. Ferreira[2]
[1]Loughborough University, Leicestershire, UK
[2]European Organisation for Nuclear Research (CERN), Genéve, Switzerland

Electropolishing is an electrochemical process that radiofrequency accelerating cavities undergo in order to improve their inner metal surface finishing. This is performed prior to their installation into particle accelerators, in order to enhance their accelerating properties. Using COMSOL Multiphysics® software it was possible to model the process throughout the cavity and study the fluid ...

Modeling a Non-Flooding Hybrid Polymer Electrolyte Fuel Cell and Related Diffusion-Migration-Reaction Systems

B.E. McNealy[1], J.L. Hertz[1]
[1]University of Delaware, Newark, DE, USA

Introduction: Understanding the mass and charge transport behavior of heterogeneous systems that include diffusion, migration, and reaction of ions is important in fuel cells, batteries, and other electrochemical applications. Here, a numerical model for charged species transport and reaction has been developed to simulate the electrochemical behavior of a novel type of “non-flooding” hybrid ...

Modelling of a 5 Cell Intermediate Temperature Polymer Electrolyte Fuel Cell (IT-PEFC) Stack: Analysis of Flow Configuration and Heat Transfer

A.S. Chandan[1], A. Mossadegh Pour[2], R. Steinberger-Wilckens[2]
[1]Centre for Hydrogen and Fuel Cell Research, University of Birmingham, Birmingham, United Kingdom
[2]University of Birmingham, Birmingham, United Kingdom

Polymer Electrolyte Fuel Cells (PEFCs) are a key technology in the advancement of society towards a low carbon future, in particular for use within the automotive sector. PEFCs are advantageous due to their low operating temperature (60-80 deg.C), quick start up times and responsiveness to load change. However, the requirement for expensive platinum, difficulty of water management and heat ...

Optimizing Electrode Surface Area by COMSOL Multiphysics®

B K SRIHARI[1], Dr K Nagarajan[1], Dr B Prabhakar Reddy[1], P VENKATESH[1]
[1]Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India

In the design of electrorefiner, Working electrode and Counter electrode surface areas are very important. The main aim of this study is to understand the effect of the ratio of Anode to cathode Surface areas in an electrorefining cell. Application of this model to design electrorefiner for metallic spent nuclear fuel is discussed with respect to Uranium recovery. Shaping of real anode surface ...

Introduction to the Modelling of Crevice Corrosion with FEMLAB

Blondel, P., Girardin, G.
AREVA, Centre Technique Framatome ANP, Dpt Corrosion-Chimie Porte Magenta, Le Creusot, France

Crevice corrosion is a form of localized corrosion, which occurs in zones where a metallic material surface is in contact with a small volume of confined, stagnant liquid whereas most of the material surface is exposed to the bulk environment. A 1D model is proposed, combining the mass transport equations written for each chemical species with the electroneutrality condition. The homogenous ...

COMSOL Multiphysics® as a General Platform for the Simulation of Complex Electrochemical Systems

A. Lavacchi[1]
[1]Department of Chemistry, University of Firenze, Sesto Fiorentino, FI, Italy

Microelectrodes demonstrate that modeling is crucial for understanding the behavior of complex electrochemical systems. The use of the finite element methods in electrochemistry may be of much more general interest for its ability to handle complex geometries. In this context a software such as COMSOL Multiphysics® allows a straightforward way to the set up models including coupling of ...

Quick Search