Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Study of Microfluidic Fuel Cell Performance

A. E. Khabbazi[1], A.J. Richards[1], and M. Hoorfar[1]
[1]School of Engineering, UBC Okanagan, Kelowna, BC Canada, Canada

Using COMSOL Multiphysics 3.5, a numerical model has been developed to determine the effect of the channel geometry and electrode configuration on cell performance based on polarization curves. The Butler-Volmer equation was implemented to determine the reaction rates at the electrodes. The Conductive Media DC module is used to model the electric fields within the fuel cell.

Simulation of the Shape of Micro Geometries Generated with Jet Electrochemical Machining

M. Hackert[1], G. Meichsner[2], and A. Schubert[1,2]
[1]Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
[2]Fraunhofer Institute of Machine Tools and Forming Technology, Chemnitz, Germany

Electrochemical Machining with a closed electrolytic free jet is a special procedure to generate complex micro structures by help of anodic dissolution. The work piece shape is fabricated by supplying an electrolytic current through an electrolyte jet ejected from a small nozzle. In this study COMSOL Multiphysics is used to simulate the electric current density in the jet and the dissolution ...

Simulation of Current Collector Corrosion Effects on the Efficiency of Molten Carbonate Fuel Cells

I. Sgura[1], F. Zarcone[2], and B. Bozzini[2]
[1]Dipartimento di Matematica, Università del Salento, Lecce, Italy
[2]Brindisi Fuel Cell Durability Laboratory, Facoltà di Ingegneria Industriale, Università del Salento, Brindisi, Italy

Corrosion and contact ohmic resistance of the stainless steel current collectors in molten carbonates is one of the greatest obstacles to widespread application of molten carbonate fuel cells (MCFC). We simulate the variation of material parameters values, accounting for the impact of corrosion of the metallic current collectors on the performance of the porous cathode. Furthermore, we couple a ...

Numerical Modeling of Pit Growth in Microstructure

S. Qidwai[1], N. Kota[2], V. DeGiorgi[1]
[1]Naval Research Laboratory, Washington, DC, USA
[2]Science Applications International Corporation, Washington, DC, USA

Pitting corrosion is a complex phenomenon where rates of: i) chemical reactions, ii) diffusion of various species involve in those reactions, and iii) species dissolution at the metal-electrolyte interface are fully dependent on each other, except under special conditions or assumptions. One set of such conditions is that: a) there are no species concentration gradients due to the rapid mixing of ...

Current Density Simulations in the Electrodeposition from Ionic Liquids: Effects of the Conductivity

I. Perissi[1], C. Borri[1], S. Caporali[1], and A. Lavacchi[1]
[1]Department of Chemistry, University of Firenze, Sesto Fiorentino, FI, Italy

The overall goal of this work is the use of COMSOL Multiphysics® in the modeling of the current density distributions for the electrodeposition of aluminum coatings from ionic liquids. The local current distribution is strongly dependant on the conductivity and on the geometry of the galvanic cell and can only be computed by the numerical solution of the partial differential equations ...

Improving Fuel Usage in Microchannel Based Fuel Cells

P. Fodor, and J. D'Alessandro
Dept. of Physics
Cleveland State University
Cleveland, OH

In this work a miniaturized fuel cell design based on microchannels, into which the liquid fuel and oxidizer streams are fed through T shaped connectors, is optimized for improved fuel usage. This particular design exploits the laminar nature of the fluid flow at small Reynolds numbers to keep the fuel and oxidizer confined in the vicinity of the corresponding electrodes without the need of a ...

A Fully Coupled Three-Dimensional Dynamic Model of Polymeric Membranes for Fuel Cells

P. Alotto[1], M. Guarnieri[1], and F. Moro[1]

[1]Dipartimento di Ingegneria Elettrica, Università di Padova, Padova, Italy

The proton exchange membrane is a key component in the currently widely studied Proton Exchange Membrane Fuel Cells. In this paper a fully coupled three-dimensional dynamic numerical model of the membrane including all the physically relevant phenomena, i.e. ion transport, hydration-dependent conductivity and thermal effects is presented. The highly non-linear model is discretized by means of the ...

Constructing COMSOL Models of a Bacteriological Fuel Cell

R. Coker[1], J. Mansell[1]
[1]NASA - Marshall Space Flight Center, Huntsville, AL, USA

We have started constructing preliminary design COMSOL models of a bacteriologically driven \'fuel cell\' that is intended to process waste products, such as carbon dioxide and brine, from a crewed vehicle. At this early stage, this complex system is reduced to two electrodes separated by a membrane. The electrolyte is a brine appropriate for growing methanogenic bateria, though none are ...

CFD Modeling and Analysis of a Planar Anode Supported Intermediate Temperature Solid Oxide Fuel Cell - new

N. Lemcoff[1], M. Tweedie[2]
[1]Rensselaer Polytechnic Institute Hartford, Hartford, CT, USA
[2]Enthone, West Haven, CT, USA

A planar anode-supported intermediate temperature solid oxide fuel cell operating on syngas fuel at 750°C was analyzed in this study. The effects of varying syngas fuel inlet compositions on species and temperature distributions, water gas shift reaction rate, potential for carbon formation and electrochemistry were considered. A 2-D COMSOL® model was developed which included separate defined ...

Impact of Electrode Surface/Volume Ratio on Li-ion Battery Performance - new

S. Das[1], J. Li[2], R. Hui[1]
[1]University of Kansas, Lawrence, KS, USA
[2]Kansas State University, Manhattan, KS, USA

The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the electrode surface area and improves the efficiency of ion exchange between the electrode and electrolyte. This performance improvement is supported by the results of our numerical simulation based of a Li+ battery in COMSOL Multiphysics® software. The ...

Quick Search