Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modelagem dos Processos de Descarga em Eletrodos de Baterias de Chumbo-Ácido - new

P. R. Impinnisi [1], L. F. Siqueira [1],
[1] Instituto Lactec, Curitiba, PR, Brasil

Foi desenvolvido um modelo 3D para simular descargas de eletrodos de baterias de chumbo-ácido. O modelo inclui a formação de filmes isolantes de sulfato de chumbo durante a descarga e permite visualizar a analisar a evolução da distribuição de linhas de corrente, os efeitos de bordas, os gradientes de concentração e outros fenômenos, nas regiões externas do eletrodo e no interior de ...

Cooling and Hardening during Injection Molding of Field Joint Coatings for Deep Sea Pipelines - new

L. Van Lokeren [1], R. Verhelle [1], S. Loulidi [1], H. Boyd [2], G. Ridolfi [2], G. Van Assche [1]
[1] Vrije Universiteit Brussel, Brussels, Belgium
[2] Heerema Marine Contractors, Leiden, The Netherlands

A multilayer polymer coating is applied to carbon steel pipelines installed in the sea to protect against corrosion and to insulate to maintain the temperature. For field joint coatings, both thermosets (like polyurethane) and semi-crystalline thermoplastics (like polypropylene) are commonly used. To predict the temperature and crystallinity or conversion of the polymer during the cooling ...

Primary Current Distribution Model for Electrochemical Etching of Silicon through a Circular Opening - new

A. Ivanov [1], U. Mescheder [1],
[1] Hochschule Furtwangen University, Furtwangen im Schwarzwald, Germany

Primary current distribution model for anodization of low-doped p-type silicon through a circular opening in frontside insulating mask is developed. The model is applied in two regimes of the process – pore formation and electropolishing – by definition of current density dependent functions of porosity and dissolution valence based on experimental results. As found also experimentally, ...

Transient Model of a Fluorine Electrolysis Cell - new

J. Vukasin [1], I. Crassous [1], B. Morel [1], J. Sanchez-Marcano [2], P. Namy [3]
[1] HRP, AREVA NC, France
[2] Institut Européen des Membranes - CNRS, France
[3] Simtec, France

In the nuclear fuel cycle, fluorine is produced by the electrolysis of the molten salt KF-2HF. It is a complex process to study since hydrofluoric acid and fluorine are hazardous and highly corrosive. A 3D-model of a lab-scale fluorine electrolysis cell has been developed to increase our understanding of this process, using the electric currents and the bubbly flow interfaces to simulate the ...

Modeling an Ejector for Hydrogen Recirculation in a PEM Fuel Cell - new

X. Corbella [1], R. Torres [2], J. Grau [2], M. Allué [3],
[1] Escola Universitària d’Enginyeria Tècnica Industrial de Barcelona (Universitat Politècnica de Catalunya), Barcelona, Spain
[2] Fluid Mechanics Department (Escola Universitària d’Enginyeria Tècnica Industrial de Barcelona - Universitat Politècnica de Catalunya), Barcelona, Spain
[3] Institut de Robòtica I Informàtica Industrial (Consejo Superior de Investigaciones Científicas – Universitat Politècnica de Catalunya), Barcelona, Spain

PEM Fuel Cells’ durability and performance can be increased using an ejector based hydrogen recirculation system. In this work, a CFD model has been implemented to simulate the flow within an ejector used to recirculate hydrogen in PEM Fuel Cell systems. The model has been validated experimentally and has been used to design and manufacture an ejector that will be implemented in a fuel cell test ...

Modeling Degradation in Lithium-Sulfur Batteries - new

R. Purkayastha [1], G. Minton [1], L. O'Neill [1], S. Walus [1], M. Wild [1], M. Marinescu [2], T. Zhang [2], G. Offer [2]
[1] Oxis Energy Ltd, Culham Science Centre, Abingdon, Oxfordshire, United Kingdom
[2] Mechanical Engineering Department, Imperial College, London, United Kingdom

Two Anode Surface processes are examined : Formation of Solid Electrolyte Interphase (SEI) and heating due to Shuttle Current. During charging, higher order sulfur species are reduced at the anode surface, while they are concurrently being oxidized at the cathode. This leads to the formation of a parasitic ‘shuttle’ current. We show that heating due to this shuttle current can lead to large ...

Electrochemical Li-Ion Battery Modelisation for Electric Vehicles - new

A. Falconi [1], D. Sicsic [2], R. Cornut [3], C. Lefrou [4]
[1] Renault s.a.s, CEA/DSM/IRAMIS/NIMBE/LICSEN, Université de Grenoble Alpes, Grenoble, France
[2] Renault s.a.s, Renault technocentre, Guyancourt, France
[3] CEA/DSM/IRAMIS/NIMBE/LICSEN, Gif Sur Yvette Cedex, France
[4] Université de Grenoble Alpes, LEPMI, CNRS, Grenoble, France

The future development of electric vehicles is now strictly linked with their batteries. In parallel of the actual research focused on the development of new materials and increase their performances in terms of energy, power, cost, durability and weight, it is necessary to develop modeling tools. The simulations are helpful for improving the knowledge of both physical and chemical phenomena, ...

Na-MCl2 Cell Multiphysics Modeling: Status and Challenges - new

R. Christin [1][2], M. Cugnet [2], N. Zanon [3], G. Crugnola [4], P. Mailley [5],
[1] FIAMM, Aubergenville, France
[2] Laboratory for Electrochemical Storage (CEA), Le Bourget du Lac, France
[3] FIAMM R&D, Montecchio, Italy
[4] FIAMM R&D, Stabio, Switzerland
[5] Laboratory of Chemistry for Materials and Interfaces (CEA), Grenoble, France

Introduction: After more than 20 years of experience in EV applications, the sodium nickel chloride technology is fully mature for large scale energy storage. Early on, mathematical modeling of Na-MCl2 cell (M standing for Fe or Ni) has attracted attention to help identifying predominant mechanisms at work during operation. However, these models were rarely validated with data coming from ...

Study of Electrochemically Generated Two-Phase Flows - new

J. Schillings [1], O. Doche [2], J. Deseure [1],
[1] LEPMI, Grenoble, France
[2] SIMAP, Grenoble, France

The dependency of electrochemical processes performances on mass transfer is well-known. Electrolyte flow in the vicinity of electrodes surface can enhance reactions due to increased mass transfer. This flow can be generated by the production of a gaseous phase, leading to a natural bubble-driven convection flow. As a drawback, gas bubbles also modify electrodes active surface and the ...

Three-dimensional Model of a New Thin-plate Lead-Acid Battery - new

J. Lannelongue [1][2][3], M. Cugnet [1][2], A. Kirchev [1][2],
[1] Université Grenoble Alpes INES, Le Bourget du Lac, France
[2] CEA, LITEN, Grenoble, France
[3]ADEME, France

Introduction: The drawbacks of most commercial “advanced battery” solutions are high price, danger, and low recyclability. The most cost efficient, environmental-friendly, and safest solutions so far is based on lead-acid electrochemistry, a proven technology for more than 150 years. Key problems of this technology are however the limited cyclability which results in a reduced lifetime and high ...