Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Finite-element Modeling of Elastic Surface Modes and Scattering from Spherical Objects

O. Falou1, J. C. Kumaradas2, and M. C. Kolios1,2
1Dept. of Electrical and Computer Engineering, Ryerson University, Toronto, ON, Canada
2Dept. of Physics, Ryerson University, Toronto, ON, Canada

In this work, backscatter from an elastic sphere was used to validate the computational model against analytical solutions (Faran theory).Agreements between analytical and finite element solutions were found in the scattered far-field over a range of frequencies of interest (10 - 70 MHz). Oscillations of the elastic sphere at various resonance frequencies (peaks in the power spectrum) were also ...

Electrical Stimulation of Brain using a realistic 3D Human Head Model: Improvement of Spatial Focality

A. Datta, M. Elwassif, and M. Bikson

Department of Biomedical Engineering, The City College of the CUNY, New York, NY, USA

We calculated the spatial distribution of the electric fields induced in the brain during transcranial current stimulation (TCS). The spatial focality obtained using ‘concentric-ring’ configurations is investigated using a realistic MRI derived 3D finite element model of the human head. Two disc electrode configurations were simulated using COMSOL Multiphysics. The distant-bipolar ...

Image Based Mesh Generation for Realistic Simulation of the Transcranial Current Stimulation

R. Said[1], R. Cotton[1], P. Young[1], A. Datta[2] , M. Elwassif[2], and M. Bikson[2]
[1]Simpleware Ltd, Exeter, UK
[2]Department of Biomedical Eng, The City College of New York, USA

Electrical stimulation of the brain involves the application of currents delivered through scalp electrodes to modulate brain activity, known as Transcranial Current Stimulation (TCS). A critical factor for TCS efficacy and safety is the “spatial focality” of induced neuronal modulation. Bikson and coauthors from the City College of New York have been investigating the impact of disc ...

The Effect of Cartilaginous Rings on Deposition by Convection, Brownian Diffusion and Electrostatics

H. Akerstedt
Luleå University of Technology, Luleå, Sweden

This paper presents a numerical study of the deposition of spherical charged nanoparticles caused by convection and Brownian diffusion in a pipe with a cartilaginous ring structure. The model is supposed to describe deposition of charged particles in the upper generations of the tracheobronchial tree of the human lung. The upper airways are characterized by a certain wall structure called ...

Simulating Organogenesis in COMSOL

D. Iber, D. Menshykau, and P. Germann
ETH Zürich
Department of Biosystems Science and Engineering
Basel, Switzerland

Organogenesis is a tightly regulated process that has been studied experimentally for decades. Computational models can help to integrate available knowledge and to better understand the underlying regulatory logic. We are currently studying mechanistic models for the development of limbs, lungs, kidneys, and bone. We have tested a number of alternative methods to solve our spatio-temporal ...

Singlet Oxygen Modeling of BPD Mediated-PDT Using COMSOL

T.C. Zhu[1], B. Liu[1], X. Liang[1]
[1]University of Pennsylvania, Philadelphia, PA, USA

Singlet oxygen (1O2) is the major cytotoxic agent during photodynamic therapy (PDT). A previously developed model that incorporates the diffusion equation for the light transport in tissue and the macroscopic kinetic equations for the generation of the singlet oxygen, can be used to numerically calculate the distance-dependent reacted 1O2 using finite-element method (FEM). The formula of reacted ...

Downscale Finite Element Modeling of Aortic Valve Leaflets for In-Situ Estimation of Cell Level Mechanics

R. Buchanan[1], M. Sacks[1]
[1]Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, University of Texas, Austin, TX, USA

As in all tissues, mechanical forces in the aortic valve (AV) modulate the constituent cell population’s physiology and biosynthetic activity. While advances have been made toward the understanding of this complex multi-scale relationship, the specific role that and extracellular matrix (ECM) coupling plays on the mechanical response of the AV interstitial cell (AVIC) is poorly understood. The ...

Computational Modeling of the Electrohydrodynamics Influencing Trace Mercury Adsorption within Electric Utility Electrostatic Precipitators

H. Clack[1]
[1]University of Michigan, Ann Arbor, MI, USA

Anthropogenic mercury (Hg) emissions increase the risk of neurological and neonatal health effects in humans through fish consumption. There are several technological approaches to controlling mercury emissions from coal combustion, including the injection of a powdered mercury sorbent into the flue gas upstream of the particulate control device (PCD). As most PCDs are electrostatic precipitators ...

COMSOL Multiphysics® Model of Canine Elbow for Use in Investigating Medial Coronoid Disease

K. A. Bodnyk[1], G. J. Noble[1], N. Fitzpatrick[2], M. J. Allen[3], K. Stephenoff[1], R. T. Hart[1]
[1]Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
[2]Fitzpatrick Referrals, Godalming, Surrey, United Kingdom
[3]Department of Veterinary Medicine, The Ohio State University, Columbus, OH, USA

The elbow joint in dogs constitutes a complex interaction of three bones, the humerus, radius and ulna. Medial coronoid disease (MCD) is a common cause of lameness in dogs, i.e. fracturing of the most prominent portion of the ulnar joint surface driven in flexion and in pivot against both the humerus and the radius. The cause remains unknown, but prior studies suggest joint incongruency as an ...

An Assessment of the Suitability of the Body and Adult Head Coils for Transmission during Paediatric Magnetic Resonance Imaging

G.R. Cook[1], M.J. Graves[1], F.J. Robb[2], D.J. Lomas[1]
[1]Department of Radiology, University of Cambridge, Cambridge, United Kingdom
[2]General Electric Healthcare Coils, Aurora, Ohio, USA

MRI offers many advantages over other modalities and its lack of ionizing radiation is important for children, but can be limited by the radio-frequency (RF) coils available. This work calculates Specific Absorption Rate (SAR) and homogeneity of the RF transmit field (B1+) when imaging infants in adult coils. Two birdcage-type coils were loaded by a tissue model and their B1+ homogeneities ...

Quick Search