Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of the Impact of Blood Vessels Flow on the Temperature Distribution During Focused Ultrasound Exposure

K.C.P. Li, B.E. O'Neill, and E. Sassaroli
Methodist Hospital Research Institute, Houston, TX, USA

Focused ultrasound systems guided by magnetic resonance imaging (MRI) and thermometry have recently made possible the non-invasive thermal ablation of benign tumors such as uterine fibroids in clinical practice. Much more work is however required in order to make this technology available for the treatment of other forms of cancer. One of the major difficulties is associated with the presence of ...

Modeling Arterial Drug Transport From Drug-eluting Stents: Effect of Blood Flow on the Concentration Distribution Close to the Endothelial Surface

F. Bozsak, J.-M. Chomaz, and A. I. Barakat
LadHyX, Ecole Polytechnique
Palaiseau, France

Drug-eluting stents (DES) are commonly used for treating coronary atherosclerosis. Despite the broad effectiveness of DES, ~5% of treated patients experience complications including in-stent restenosis and late-stent thrombosis. Furthermore, drugs used in DES not only inhibit proliferation of smooth muscle cells but also affect re-endothelialization. We have developed a computational model of ...

Finite Element Analysis of Equine Tooth Movement Under Masticatory Loading

M. Gardemin[1], M. Lüpke[1], V. Cordes[2], and C. Staszyk[2]
[1]Institute for General Radiology and Medical Physics, University of Veterinary Medicine Hannover, Hannover, Germany
[2]Institute of Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany

Like humans, horses can develop a variety of dental problems. Different equine diseases occur in different areas of the equine cheek tooth or its surrounding tissues. With a realistic simulation of a chewing cycle it can be possible to link mechanical phenomena such as high stress in distinct areas to commonly occurring diseases. According to different angles of the acting chewing force, ...

Evaluation of Performance of Enzymatic Biofuel Cells with Microelectrode Arrays Inside a Blood Artery via Finite Element Approach

C. Wang[1], Y. Song[1]
[1]Florida International University, Miami, FL, USA

Enzymatic biofuel cells (EBFCs) are considered as a promising candidate for powering miniature implantable devices. In order to predict the performance in the human blood artery, we simulated a 3D EBFC chip with highly dense micro-electrode arrays. In this simulation using COMSOL Multiphysics®, we applied the 1) Michaelis Menten equation; 2) Nernst potential equation; 3) Navier Strokes velocity, ...

Analysis of Heat Transfer in a Complex Three Dimensional Structure Fabricated by Additive Manufacturing

C. Settle[1], K. Hoshino[1]
[1]Biomedical Engineering Department, University of Connecticut, Storrs, CT, USA

The goal of this study was to create a three dimensionally designed biomedical device with multiple functionalities and analyze its simulated heat transfer. The device would be fabricated through additive manufacturing; specifically electron beam melting (EBM). EBM has a feature size constraint of 1 mm (acceptable for this design) and is only capable of manufacturing titanium alloys [2]; a ...

Thin Membrane Modelling for the Electrical Stimulation of Auditory Nerve

A. Grünbaum[1], S. Petersen[1], H.W. Pau[2], and U. van Rienen[1]

[1]IEF funded by DFG Research Training Group 1505/1 Welisa, University of Rostock, Rostock, Germany
[2]Otolaryngology “Otto Körner”, University of Rostock, Rostock, Germany

Modeling of 2-5 μm thin membranes into a cochlea with a width of 2 cm is computationally. The paper is focused on two approximative methods used to overcome this problem and in addition a simple model challenging of a plate capacitor with a thin membrane of different thickness in-between is presented. The results of simulations with both thin layer approximation methods are compared with those ...

Contact and No-Compression Analysis of a Human Spine Segment: Theory, Method and Parametric Investigation

P. Nédli1, G. E. Stavroulakis2, and M. Kurutz1
1 Department of Structural Mechanics, Budapest University of Technology and Economics, Budapest, Hungary
2 Institute of Computational Mechanics and Optimization, Technical University of Crete, Chania, Greece

Various two-dimensional models of lumbar spine segments, that is, lumbar functional spinal units (FSU) have been developed and studied here. FSU is the smallest part of the spine that has all the important features that the whole spine has. It consists of two adjacent vertebrae with the intervertebral disc between them and the surrounding ligaments.Since the spine segment has a symmetrical ...

Modeling Controlled Release of Actives from Structured Foods

A. D. Haydock, J. Melrose, P. Rayment, M. F. Butler, and G. Lian
Unilever R&D Colworth, Colworth House, Sharnbrook Bedford, UK

In this presentation, we describe the use of COMSOL for modeling release of active molecules from hydrogels as a model system of structured foods. We first discuss the structural changes of hydrogel in the gastro-intestinal (GI) tract environment and how this is modelled mathematically. We then discuss how to implement the mathematical equations in COMSOL. Computer simulations have been performed ...

Modelling the Coupled Heat and Mass Transfer during Fires in Stored Biomass, Coal and Recycling Deposits

F. Ferrero
Federal Institute for Materials Research and Testing Division II.2, Berlin, Germany

It is known that in big storages of bulk materials the danger of the self-ignition is relevant (long time storages). The Consequences of uncontrolled fires include considerable CO2 emission and economical and human losses to mention a few. The understanding of this phenomena is therefore of great importance.A numerical model can be of great help in understanding such complex phenomena. In this ...

Validation of Measurement Strategies and Anisotropic Models Used in Electrical Reconstructions

R. Sadleir
Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA

We are developing approximations of electrically anisotropic materials for use in novel imaging methods. Our modeling work in COMSOL comprises comparisons of anisotropic and layered models in terms of electrical conductivities measured using different strategies. We tested solution stability in one anisotropic case by varying mesh anisotropy. In our case, good approximations to the true ...

Quick Search