Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Transport of Vocs through Bioflim in Biotrickling Filters

Balasubramanian P[1]
[1]Indian Institute of Technology Madras, Chennai, Tamil Nadu, India

Realising the interlinkage of nature and engineering are of paramount essential while comprehending the basics of system’s performances. Application of biotechniques in air pollution control is one such emerging scientific area, where the understandings of these complex systems demand more utilisation of computing softwares. Recently, biofiltration is a versatile biological air pollution ...

Analyte Capture from Liquid Samples: Size Matters

M. Weber[1], M. Reed[1]
[1]Yale University, New Haven, CT, USA

Arrays of vertical pillars, Micro Purification Chips, have been widely used for analyte capture from liquid samples [Henderson et. al, 2006], [Toner et. al, 2007], [Stern et. al, 2010]. However exact understanding of the capture efficiency mechanisms has not been previously explained. Here we present a model in COMSOL Multiphysics® which calculates analyte capture efficiency based on initial ...

Providing an Entry Length in Heterogeneous Catalytic Reactors with Fast Diffusion

D. Dalle Nogare[1] and P. Canu[1]

[1]Department of Chemical Engineering Principles and Practice, University of Padova, Padova, Italy

This work investigates the effects of boundary conditions on the species profiles in heterogeneous catalysis, with low Péclet systems. Hydrogen combustion in Helium was chosen because of the high diffusivities. Furthermore, already at T=300°C over a Pt catalyst, kinetics is very fast and the composition gradients at the inlet extremely steep. The issue is analyzed with 1D models, ...

Analysis of Heat, Mass Transport, and Momentum Transport Effects in Complex Catalyst Shapes for Gas-Phase Heterogeneous Reactions Using COMSOL Multiphysics

A. Nagaraj[1], and P. Mills[2]

[1]Department of Electrical Engineering and Computer Science, Texas A&M University, Kingsville, TX, USA
[2]Department of Chemical and Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

The global demand for sulfuric acid has been forecast to grow at an average of 2.6% per year from 2005 – 2010. The primary objective of this work is to analyze the performance of various heterogeneous catalyst shapes that have been proposed for the oxidation of SO2 to SO3 used in the manufacture of sulfuric acid. COMSOL Multiphysics provides a powerful numerical platform for simulation of ...

Microvascular Dysfunction in PAD Patients - new

K. Cluff[1], H. Mehraein[1], B. Jayakumar[2]
[1]Department of Bioengineering, Wichita State University, Wichita, KS, USA
[2]Department of Industrial & Manufacturing Engineering, Wichita State University, Wichita, KS, USA

Background: Peripheral arterial disease (PAD) is characterized by atherosclerotic blockages of the arteries supplying the lower extremities, which cause a progressive accumulation of ischemic injury to the skeletal muscles of the lower limbs. Despite revascularization treatment intervention some PAD patients require follow up secondary treatment due to a continued decline in limb function, ...

Modelling of Reactive Non-Isothermal Mixture Flow and its Simulation in COMSOL Multiphysics® Software - new

V. Orava[1,2], O. Soucek[1], P. Cedula[2]
[1]Charles University in Prague, Prague, Czech Republic
[2]Zurich University of Applied Sciences, Winterthur, Switzerland

I introduce a model of fluidized reactor which, in presence of heterogeneous platinum-based catalyst, decomposes liquid formic acid producing gaseous mixture of carbon dioxide and hydrogen as the product. I treat the physical system as a (Class II) mixture of four constituents - namely formic acid (FA), Platinum micro-pellets (Pt), carbon dioxide (CO_2) and hydrogen (H_2) - which can be, without ...

Relevance of Hydro-Mechanical-Chemical Processes Involved in the Construction and Operation of Copper Heap Leach Pads

M. Tincopa[1], A. Nardi[2], G. Roman-Ross[2] , J. Molinero[2]
[1]Technic University of Catalonia (UPC), Barcelona, Spain
[2]Amphos 21 Consulting, Barcelona, Spain

Heap leaching in the mining industry had become a sophisticated practice at least 500 years ago. It is a mineral processing technology whereby piles of crushed Run-of–Mine rock are leached with chemical solutions to extract minerals. The goal of this work is to contribute to the understanding of the behavior of a heap leach pad by using coupled Hydro-Mechanical-Chemical simulations. COMSOL ...

Combustion of Lean Methane in a Catalytic Flow Reversal Reactor

C. Devals[1], A. Fuxman[2], F. Bertrand,[1], J.F. Forbes[2], and R.E. Hayes[2]
[1] École Polytechnique de Montréal,
[2] University of Alberta

The combustion of lean methane in a catalytic flow reversal reactor (CFRR) is studied using COMSOL Multiphysics and a 2D continuum model. This model is based on mole and energy balance equations for the solid (the inert and catalytic sections of the reactor) and the fluid phases. The results show the impact on the methane conversion and the maximum temperature in the reactor of key ...

Reaction and Thermal Modeling of a Packed Bed Reactor for Hydrogen Storage

T. Williams1, K. Gazda1, A. Kindler2, Y. Huang2, D. Karner3, J. Read4
1GreenMountain Engineering, San Fransisco, CA, USA
2Jet Propulsion Laboratory, California Institute of Technology, CA, USA
3ETEC, Phoenix, AZ, USA
4ECOtality, Scottsdale, AZ, USA

Energy storage is an increasingly important area of research both for use in alternative transportation and to enable the widespread use of intermittent energy sources such as wind and solar energy. This paper presents a multiphysics model of a novel technology for hydrogen storage, in which hydrogen is stored in a packed bed of metal hydride and released by application of steam through a number ...

Modeling of an Oxygenation-Aided 3D Culture for Functional Beta-Cell Expansion

S. Jin[1], J. McReynolds[1], X. Li[2], J. Guan[2]
[1]Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA

Currently, researchers are looking for ways to mass-produce biologically functional pancreatic beta cells in vitro because of the shortage of donor tissue needed for diabetes cell therapy. The beta cells will become hypoxic if their high oxygen demands are not met. We hypothesized that the biological function of beta cells can be improved if they are cultured in a 3D collagen scaffold, which ...

Quick Search