Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Photo-Biological Reactor for Organic Waste Consumption and Hydrogen Production

L. F. de Souza[1]
[1]Universidade Federal do Paraná, Curitiba, Paraná, Brazil

A simple steady-state photo-fermentative biochemical model was developed using the COMSOL Multiphysics'® Transport of Diluted Species physics interface. A dimensionless model seeks optimal physical parameters based on given biochemical parameters found in literature. A parametric sweep of the physical parameters is enabled without altering the mesh. Other limitations can be easily added to this ...

Multiphase Porous Media Model for Microwave Drying Spherical Potatoes - new

H. Zhu[1], T. Gulati[2], K. Huang[1], A.K. Datta[2]
[1]Sichuan University, Chengdu, Sichuan, China
[2]Cornell University, Ithaca, NY, USA

Mathematical description of microwave drying requires the solution of two different physics: electromagnetics in the microwave oven cavity and food material and, transport process (mass, momentum and heat transport) in the food material. Maxwell’s equations for electromagnetics were solved using the RF Module using the GMRES iterative solver with the GeometricMultigrid preconditioner. Mass, ...

Design by FEMLAB of a complex 3D solid substrate for study of microbial growth kinetics

Molin, P., Ferret, E., Gervais, P.
Laboratoire GPAB, ENSBANA, Dijon, France

A 3D model for growth of filamentous fungi on solid substrate, based on microscopic observations was developed and tested on macroscopic experimental data. Comparisons with previous models were performed. The specificity of solid substrate growth was taken into account in the model equations. Interest for FEMLAB users is the difficulties we had to define 3D complex structures, like polyhedra.

CO2 capture by means of chemical looping combustion

Pavone, D.
IFP, Lyon, Vernaison, France

In a search of concepts for innovative reactors allowing CO2 capture in gas turbine, monolith based chemical looping combustion has been identified as a promising concept. A precise simulation of the chemical looping combustion in a channel of monolith is developed to define the design rules and the material specifications. The objective is also to evaluate this innovative process in terms of ...

Modeling of an Operando Catalytic Reactor Operated in the Concentration Pulse Mode

S. Pietrzyk, A. Y. Khodakov, and C. Dujardin
Unité Catalyse et Chimie du Solide, Université des Sciences et Technologies de Lille, Ecole Nationale Supérieure de Chimie de Lille, Ecole Centrale de Lille, Villeneuve d’Ascq, France

Operando reactors are used to study, qualitatively and/or quantitatively, active sites of the catalyst and the intermediates of a catalytic heterogeneous chemical reaction, while the reaction is being carried out ("in situ, on-line catalysis studies"). In the present work, an operando reactor using transmission infra-red (IR) absorption spectroscopy has been used to study the Fischer-Tropsch ...

Adaptive Control of Simulated Moving Bed Plants Using Comsol’s Simulink Interface

M. Fütterer
Institut für Automatisierungstechnik, Otto-von-Guericke Universität, Magdeburg, Germany

Preparative chromatography is an important separation method where the simulated moving bed (SMB) technology is an increasingly used separation process for binary mixtures. Several chromatographic columns are arranged in a ring where the feedings and drains are changed cyclically to maintain a continuous separation. For this reason, an adaptive controller is proposed to adjust the flow rates ...

Analysis of Heat, Mass Transport, and Momentum Transport Effects in Complex Catalyst Shapes for Gas-Phase Heterogeneous Reactions Using COMSOL Multiphysics

A. Nagaraj[1], and P. Mills[2]

[1]Department of Electrical Engineering and Computer Science, Texas A&M University, Kingsville, TX, USA
[2]Department of Chemical and Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA

The global demand for sulfuric acid has been forecast to grow at an average of 2.6% per year from 2005 – 2010. The primary objective of this work is to analyze the performance of various heterogeneous catalyst shapes that have been proposed for the oxidation of SO2 to SO3 used in the manufacture of sulfuric acid. COMSOL Multiphysics provides a powerful numerical platform for simulation of ...

Reacting Flows in Industrial Duct-burners of a Heat Recovery Steam Generator

G. Petrone[1], G. Cammarata[1], S. Caggia[2], and M. Anastasi[2]
[1]Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy
[2]Engineering Maintenance - ISAB Energy Services, Priolo Gargallo, Italy

In this study, COMSOL Multiphysics is applied in order to simulate reacting flows for duct burner systems arranged in the post-firing section of a Heat Recovery Steam Generator of a combined cycle power plant. Two- and three-dimensional simulations are carried out in order to investigate on operative conditions mainly responsible of duct burners overheating. The results are obtained for several ...

H2SO4 Catalysis: Perspective and Opportunities for Reducing SO2 Emissions

P. L. Mills[1], A. Nagaraj[2]
[1]Department of Chemical & Natural Gas Engineering, Texas A&M University, Kingsville, TX, USA
[2]Department of Environmental Engineering, Texas A&M University, Kingsville, TX, USA

Introduction: Development of next-generation chemical processes that have zero emissions is a key environmental objective for sustainable development. The manufacture of H2SO4 by the air oxidation of SO2 to SO3 is an important technology where an opportunity exists for new catalyst development and process innovation by reducing emissions of unconverted SO2 in process reactor tail gases owing to ...

Computations on the coupled heat and mass transfer during fires in bulk materials, coal deposits and waste dumps

Krause, U., Schmidt, M., Lohrer, C.
Federal Institute for Materials Research and Testing (BAM), Division II.2 “Reactive Substances and systems”, Berlin, Germany

In porous combustible matter low-rate oxidation takes place at ambient conditions. In large stockpiles of bulk goods, coal heaps, waste dumps etc. it may occur that the heat released by the oxidation reaction is not fully transmitted to the surroundings but raises the temperature within the deposit. This triggers a positive feed-back loop since the oxidation rate increases with temperature. The ...

Quick Search