Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Designing an Array of Nanocalorimeters for Screening Biochemical Interactions

F. Torres
Palo Alto Research Center

In this presentation we present our analysis of the PARC Nanocalorimeter. Calorimetry is basically the measuring of heat of chemical reactions or physical changes. Nanocalorimetry is Calorimetry at the Nanometer scale. The PARC Nanocalorimeter is a special type of Calorimeter, it consists of arrays of Nanocalorimeters. The PARC Nanocalorimeter is intended to be used for screening biochemical ...

Visions Realized: Using COMSOL Multiphysics to Prepare Students for the Modern World

Bruce A. Finlayson
University of Washington
Washington, USA

This talk demonstrates the success in teaching chemical engineering undergraduates to use COMSOL Multiphysics (FEMLAB) to solve realistic problems in a project format. Undergraduates have been creative and solved problems much more difficult than those in their textbooks, thus gaining a deeper understanding of transport processes. Illustrations are also given how they check to see they’ve ...

A Model of a Horizontal Atmospheric Pressure Chemical Vapor Deposition Reactor

T. Adams

Naval Surface Warfare Center Crane Division, CRANE, IN, USA

A model of a horizontal atmospheric pressure chemical vapor deposition reactor was implemented to aid in the design of a laboratory based one. The model coupled momentum transport, energy transport, and mass transport phenomena to account for reacting fluid flow of a compressible gas in a heated chamber. The system modeled was silicon deposition from trichlorosilane in hydrogen carrier gas.

Modélisation d'une décharge luminescente à la pression atmosphérique

Cormier, J.M., Semmar, N., Ouni, M.F.
GREMI, UMR 6606, Orléans

Les décharges luminescentes à pression atmosphérique sont étudiées expérimentalement en laboratoire pour la valorisation des alcanes et notamment la production d'hydrogène à partir du méthane. La modélisation des dispositifs usuels est complexe compte tenu de l'aspect non stationnaire des décharges. Afin d'évaluer le poids des paramètres de réglage d'un réacteur nous avons ...

Modelling of Catalytic Radiant Heaters

J.P.Mmbaga, T.M. Mannan, N. Joederi, S.E. Wanke, and R.E. Hayes
University of Alberta

In this work we present the modelling of catalytic radiant heaters. The presentation outlines the mathematical model as well as a Laboratory setup of a catalytic radiant heater.

Establishing Absorbed Dose Thresholds for Nonlinearities in Water Calorimetry

R.E. Tosh[1], H. Chen-Mayer[1]
[1]National Institute of Standards and Technology, Gaithersburg, MD, USA

The technique of water calorimetry for primary-standard dosimetry of radiotherapy-level ionizing radiation is well established at national metrology institutes around the world, where such a direct realization of absorbed dose establishes the basis for calibrating instruments used for dosimetry in medical settings. The typical calorimeter system uses miniature thermistor beads to measure ...

Simulationen als Werkzeug für die Designoptimierung von katalytisch aktiven Wall-Flow-Monolithen

S. Ungermann[1], M. Votsmeier[2], J. Gieshoff[2], and H. Vogel[1]
[1] Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Darmstadt
[2] Umicore AG& Co. KG, Hanau-Wolfgang

This work focuses on simulations for design optimization by dividing a filter into two zones with different amounts of noble metal in a porous wall. For this, a two-dimensional stationary model with a simplified kinetics is devised and different appendages are followed up. Furthermore, time-dependent simulations with this 2D-model are presented.

Modeling the Rheology of Liquid Detergents

Vincenzo Guida
R&D Process Design Principal Engineer, Procter & Gamble, Italy

Outline of presentation: Comsol is a very flexible platform, ideal to model rheology modification under flow Analogy with reactive flows allows modeling of both thixotropy and gelation with decent level of accuracy and predictability It is possible, to a certain extent, to use 1D rheology to extrapolate 3D behavior ---------------------------------- Keynote speaker's biography:Vincenzo ...

Design Simulations of a General Purpose Research Micro Reactor for Methane Conversion to Syngas.

C. Bouchot[1], and M.A. Valenzuela[1]
[1]Instituto Politécnico Nacional-ESIQIE, México D.F, México

A general purpose stainless steel micro reactor setup for methane conversion is being designed for research purposes. We intend to design and build a modular device that would be able to manage different types of reactions depending on the installed modules. The device should be able to allow the study of gas phase reactions at low (atmospheric) and high pressures (up to 20 MPa), with the ...

COMSOL Computational Fluid Dynamics for Microreactors Used in Volatile Organic Compounds Catalytic Elimination

M. Olea[1], S. Odiba[1], S. Hodgson[1], A. Adgar[1]
[1]School of Science and Engineering, Teesside University, Middlesbrough, United Kingdom

Volatile organic compounds (VOCs) are organic chemicals that will evaporate easily into the air at room temperature and contribute majorly to the formation of photochemical ozone. They are emitted as gases from certain solids and liquids in to the atmosphere and affect indoor and outdoor air quality. They includes acetone, benzene, ethylene glycol, formaldehyde, methylene chloride, ...

Quick Search