Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design and Analysis of an Electrostatic Precipitator for a Diesel Particulate Filter - new

S. Manoj[1], R. Giri[1], S. Selvakumar[1]
[1]Rajalakshmi Engineering College, Chennai, Tamil Nadu, India

Gaseous exhaust of different industries contains dust particles of different chemical precipitates that are harmful for the environment. Electrostatic Precipitators are very often used in industries like power plant to filter their gaseous exhaust and to prevent the atmosphere to being polluted. Electrostatic Precipitators are very efficient in dust particle collection from the flue gas. ...

Simulation and Design of a Microfluidic Respirometer for Semi-Continuous Amperometric Short Time Biochemical Oxygen Demand (BODST) Analysis

F.J. del Campo[1], A. Torrents[1], J. Mas[2], F.X. Muñoz[1]
[1]Instituto de Microelectronica de Barcelona, IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
[2]Departement de Genètica i Microbiologia, Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

Introduction: This work presents the design of a novel flow cell based miniaturized electrochemical respirometer to monitor organic content in water samples semi-continuously, in contrast to current Biochemical Oxygen Demand, BOD, methods. Simulation techniques has been used to parameterize and optimize aspects such as height and length of the channels, materials and thickness, flow and oxygen ...

Optimization of Jet Mixer Geometry and Mixing Studies - new

A. Egedy[1], B. Molnar[1], T. Varga[1], T. Chován[1]
[1]Department of Process Engineering, University of Pannonia, Veszprém, Hungary

The primary aim of using jet as mixer, like in case of other mixing devices, is to increase the heat and mass transfer between the phases. Beside the injection position the geometry of the jet mixer and the injection nozzle has a major effect on the injection. In our study COMSOL Multiphysics software was used to carry out the experimental and simulation of the different jet geometries. The jet ...

An Approach to Modeling Vacuum Desorption - new

C. F. Gomez[1], R. Schunk[1], R. F. Coker[1], J. Knox[1]
[1]NASA Marshall Space Flight Center, Huntsville, AL, USA

The objective of this simulation effort is to develop a mathematical model of vacuum desorption on a POC (Proof of Concept) canister loaded with Zeolite 13X/5A . This canister contains a pelletized adsorption bed which is used to adsorb H2O and CO2. Once this bed is fully saturated with an equilibrium loading, desorption is then accomplished by reducing the pressure to near vacuum. This type of ...

Model of Combustion Synthesis of Thermoelectric Calcium Cobaltates

J. Selig, and S. Lin
Lamar University, Beaumont, TX, USA

Self-propagating High-temperature Synthesis (SHS), a very economical synthesis of oxides was used in our lab to produce oxide materials. SHS process uses a highly exothermic reaction to convert reactants rapidly to pure products with minimal external energy input. This reaction is initiated by an igniter and reaction front propagates from the ignition through the rest of the sample. The fast ...

Simulation of Differential Ion Mobility (DMS) Principle Coupled with Mass Spectrometry in Atmospheric Pressure

F. Sinatra[1], T. Wu[2], A. Avila[2], E. Nazarov[1], T. Evans-Nguyen[1], J. Wang[2]
[1]Draper Laboratory, Tampa, FL, USA
[2]University of South Florida, Tampa, FL, USA

Mass spectrometry is an analytical technique widely used in the scientific community to determine chemical composition of sample compounds. Typically, mass spectrometers perform their analysis under vacuum conditions, though atmospheric pressure mass spectrometers are becoming more prevalent. With the development of atmospheric pressure mass spectrometers, techniques such as FAIMS (Field ...

Transport of Vocs through Bioflim in Biotrickling Filters

Balasubramanian P[1]
[1]Indian Institute of Technology Madras, Chennai, Tamil Nadu, India

Realising the interlinkage of nature and engineering are of paramount essential while comprehending the basics of system’s performances. Application of biotechniques in air pollution control is one such emerging scientific area, where the understandings of these complex systems demand more utilisation of computing softwares. Recently, biofiltration is a versatile biological air pollution control ...

Modelling of Reactive Non-Isothermal Mixture Flow and its Simulation in COMSOL Multiphysics® Software - new

V. Orava[1,2], O. Soucek[1], P. Cedula[2]
[1]Charles University in Prague, Prague, Czech Republic
[2]Zurich University of Applied Sciences, Winterthur, Switzerland

I introduce a model of fluidized reactor which, in presence of heterogeneous platinum-based catalyst, decomposes liquid formic acid producing gaseous mixture of carbon dioxide and hydrogen as the product. I treat the physical system as a (Class II) mixture of four constituents - namely formic acid (FA), Platinum micro-pellets (Pt), carbon dioxide (CO_2) and hydrogen (H_2) - which can be, without ...

Model for Steam Reforming of Ethanol Using a Catalytic Wall Reactor

J. Torres[1], and D. Montane[2]
[1]Centre Huile Lourde Ouvert et Experimental (CHLOE), University of Pau, France
[2]Department of Chemical Engineering, Virgili University, Tarragona, Spain

Steam Reforming of Ethanol using a Catalytic Wall Reactor (CWR) was successfully studied using COMSOL Multiphysics. A mathematical model was used to describe the reactor performance in terms of the main variables and dimensionless groups. Simulations showed that at specified conditions CWR maintains a thermal performance adequate for evaluating catalysts under a uniform temperature profile. CWR ...

Fluid Flow and Heat Transfer Characteristics in a Stirred Cell System for Crude Oil Fouling

M. Yang[1], A. Young[1], and B. Crittenden[1]

[1]Department of Chemical Engineering University of Bath, Bath, United Kingdom

A small batch stirred cell which is operated at temperatures up to 400 °C and pressures up to 30 bar is used to study fouling behaviors of selected crude oils. COMSOL Multiphysics package is used for the CFD (Computational Fluid Dynamics) and heat transfer modeling for this stirred cell system. The simulation results are validated against the measured temperature data at various axial ...