Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Surface Chemical Reactions in a Monolith Channel for Hydrogen Production

N. Pacheco[1], D. Pavone[1], K. Surla[1], J. Houzelot[2], and E. Schaer[2]
[1]IFP-Lyon, Solaize, France
[2]ENSIC, Solaize, France

This paper intends to show a model of a monolithic reactor for the autothermal reforming process (ATR), a process that uses hydrocarbons to produce H2. The ATR chemical reactions take place on the surface of monolith channels coated with a catalyst. The isothermal ATR reactor is modeled using 42 catalytic surface chemical reactions that involve 13 solid species and 7 gas species. To solve the ...

Advancements in Carbon Dioxide and Water Vapor Separations Using COMSOL Multiphysics® Software - new

J. Knox[1], R. F. Coker[1], C. F. Gomez[1], R. Schunk[1], R. Cummings[1]
[1]NASA Marshall Space Flight Center, Huntsville, AL, USA

NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" [1]. Under the new Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project [2], efforts are focused on improving current state-of-the-art ...

Modelling of a Wool Hydrolysis Reactor - new

M. Giansetti[1], A. Pezzin[1], S. Sicardi[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

The Life+ GreenWoolF project is aimed at demonstrating that green hydrolysis with superheated water is an effective way to convert wool wastes into organic nitrogen fertilizers. The core of the process is represented by the reaction tank (Figure 1) in which the hydrolyses reaction takes place. The temperature of the material during the reaction is one of the most influencing parameter and has to ...

Can Oscillatory Convection Accelerate Signal Propagation in Simple Epithelium?

M. Nebyla[1], M. Pribyl[1]
[1]Institute of Chemical Technology, Prague, Department of Chemical Engineering, Prague, Czech Republic

We introduce a mathematical model of signal transmission in simple epithelial layers. The mathematical model consists of reaction-transport equations for extracellular ligands, cellular receptors, ligand-receptor complexes and a ligand releasing protease. We consider diffusion and nonstationary convective transport of protein ligands in the extracellular space. The study was carried out using ...

The Use of Multiphysics Modeling in the Steel Industry

Filip Van den Abeele
Simulation Expert, OCAS, Belgium

OCAS is a joint venture between ArcelorMittal and the Flemish Region. She uses COMSOL Multiphysics for the following: Enamel solidification Magnetic Pulse Forming Electromagnetic modelling of electric machines Vortex Induced Vibrations Model Identification for Orthotropic Materials and much more ---------------------------------- Keynote speaker's biography:Filip Van den Abeele has a ...

Reactive Transport Processes in Compacted Bentonite

A.E. Idiart[1], M. Pekala[1], A. Nardi[1], D. Arcos[1]
[1]Amphos 21, Barcelona, Spain

The Swedish Organization for Radioactive Waste (SKB) is considering disposal High Level Wastes in a deep underground repository. Bentonite clay is planned to be used in the near-field of the waste packages as buffer material. The buffer is expected to provide a favorable environment with limited radionuclide migration due to slow diffusion and retardation by sorption and cation-exchange effects. ...

Dynamic Simulation of Interface Shapes During Chemical Vapor Deposition

J. V. Jayaramakrishna[1], S. K. Thamida[1]
[1]National Institute of Technology Warangal, Warangal, Telangana, India

Chemical Vapor Deposition (CVD) finds application in many manufacturing processes of microelectronic devices and MEMS as a recent development. It is also useful for preparation of functionalized surfaces in microsensor kind of devices. The phenomena that is studied is deposition of a crystalline material for example Silicon from the gas phase substance such as Silicon Hydride (SiH4). The material ...

Two-Dimensional Modelling of a Non-Isothermal PrOx Reactor with Water Cooling for Fuel Cell Applications

H. Beyer[1], B. Schönbrod[1], C. Siegel[1], M. Steffen[1], and A. Heinzel[1][2]
[1]Zentrum für BrennstoffzellenTechnik GmbH, Duisburg, Germany
[2]Institut für Energie und Umweltverfahrenstechnik, University of Duisburg-Essen, Duisburg, Germany

This work treats of a preferential oxidation reactor, which is simulated by a two-dimensional axial symmetric model. The reactor serves as purification of hydrocarbon reformat and converts the CO mole fraction from up to 1 % in the feed gas down to a few ppm at the outlet to deliver a hydrogen rich feed gas for a PEM fuel cell. The model combined chemical kinetic expressions, which were ...

A Model of a Horizontal Atmospheric Pressure Chemical Vapor Deposition Reactor

T. Adams

Naval Surface Warfare Center Crane Division, CRANE, IN, USA

A model of a horizontal atmospheric pressure chemical vapor deposition reactor was implemented to aid in the design of a laboratory based one. The model coupled momentum transport, energy transport, and mass transport phenomena to account for reacting fluid flow of a compressible gas in a heated chamber. The system modeled was silicon deposition from trichlorosilane in hydrogen carrier gas.

Advancements in Carbon Dioxide and Water Vapor Separations Using COMSOL Multiphysics®

J. Knox[1], R. Coker[1], R. Cummings[1], C. Gomez[1], G. Schunk[1]
[1]NASA, Marshall Space Flight Center, Huntsville, AL, USA

Some NASA efforts are focused on improving current systems that utilize fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. For the bulk separation of CO2 and H2O, temperature changes due to the heat of adsorption are significant, requiring modeling and ...