Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of a Biogas Steam Reforming Reactor for Solid Oxide Fuel Cell Systems

F. Cipitì[1]
[1]CNR-ITAE, Institute of Advanced Technologies for Energy, Messina, Italy

A biogas steam reforming reactor has been developed in order to be integrated into a proof-of-concept SOFC system, able to operate with biogas produced in an industrial waste water treatment unit. A mathematical model, aimed at describing the performance of the reactor, has been developed. The reactor is simplified and modeled as a non-isothermal plug flow reactor. The reactor is fed with a total ...

Coupled Palaehydrogeological Microbial and Geochemical Reactive Transport Model of the Olkiluoto Site (Finland)

P. Trinchero[1], M. Luna[1], J. Molinero[1], G. Román-Ross[1], F. Maia[1], A. Nardi[1], J. Löfman[2], P. Pitkänen[3], L. Koskinen[3]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]VTT Energy, Finland
[3]Posiva Oy, Olkiluoto, Finland

Olkiluoto at Eurajoki has been selected as the final repository site for spent nuclear waste in Finland. This area has been affected, at regional scale, by land-uplift processes related to the ice withdrawal. These events have resulted in a complex and stratified heterogeneous hydrochemical system. The objective of this work was to develop a robust paleohydrogeological reactive transport (PRT) ...

An Innovative Reactive Transport Modeling Approach for the Chemical Evolution of a HLW Cell in the Callovo-Oxfordian Formation

J. Molinero[1], D. García[1], M. Grivé[1], A. Nardi[1]
[1]Amphos 21 Consulting, Barcelona, Spain

Andra (The French National Radioactive Waste Management Agency) envisages the safe disposal of High-Level Waste (HLW) and Intermediate-Level Long-Lived Waste (IL-LLW) in deep geological storage using a multi-barrier system. To ensure the containment of radioactivity, the principle of storage is based on a clay formation with low permeability, homogeneity and continuity (i.e Callovo-Oxfordian ...

Relevance of Hydro-Mechanical-Chemical Processes Involved in the Construction and Operation of Copper Heap Leach Pads

M. Tincopa[1], A. Nardi[2], G. Roman-Ross[2] , J. Molinero[2]
[1]Technic University of Catalonia (UPC), Barcelona, Spain
[2]Amphos 21 Consulting, Barcelona, Spain

Heap leaching in the mining industry had become a sophisticated practice at least 500 years ago. It is a mineral processing technology whereby piles of crushed Run-of–Mine rock are leached with chemical solutions to extract minerals. The goal of this work is to contribute to the understanding of the behavior of a heap leach pad by using coupled Hydro-Mechanical-Chemical simulations. COMSOL ...

Effects of Flow and Diffusion on Blood Coagulation in Platelet Poor Plasma: a Two-way Coupling Between Hemodynamics and Biochemistry

D. Magnabosco[1,2], H. van Ooijen[2], B. Bakker[2], R. van den Ham[2]
[1]Politecnico di Milano, Milan, Italy
[2]Philips Research, Eindhoven, The Netherlands

Enzyme reactions, blood flow and diffusion in human vasculature play interacting and fundamental roles in blood coagulation. In this complex mechanism, the balance between blood and clot is a delicate equilibrium, whose tight regulation is vital to avoid pathologies such as bleeding and thrombosis. The secondary hemostasis triggered by tissue factor in platelet poor plasma is studied up to fibrin ...

A COMSOL Multiphysics®-based Model for Simulation of Methane-Hydrate Dissociation by Injection of Superheated Carbon Dioxide

M. Gharasoo[1], C. Deusner[1], N. Bigalke[1], M. Haeckel[1]
[1]Department of Marine Geosystems, GEOMAR - Helmholtz Centre for Ocean Research, Kiel, Germany

Immense amounts of methane are stored as gas-hydrate deposits in deep layers of marine sediments. This has raised considerable interest to develop strategies for producing natural gas from marine hydrates. One potential production strategy is the injection of supercritical CO2 into methane hydrate-bearing sand layers to release the CH4 as a gas and sequester the CO2 as hydrate. We used COMSOL ...

Electrochemical Study of Potential Materials for Cochlear Implant Electrode Array

N. Lawand[1], V. Lopez[1,2], P. French[1]
[1]Delft University of Technology, Delft, The Netherlands
[2]Università degli studi di Napoli "Federico II", Naples, Italy

Cochlear Implants (CIs) are implantable prostheses that bypass the non-functional inner ear and directly stimulate the auditory nerve with electric currents, enabling deaf people to experience sound again. The CI electrode array sits inside the cochlea close to the auditory neurons. An ideal stimulation material must have low impedance with maximum charge transfer capacity in the electrochemical ...

Modeling the Vanadium Oxygen Fuel Cell

F.T. Wandschneider[1], M. Küttinger[1], P. Fischer[1], K. Pinkwart[1], J. Tübke[1], H. Nirschl[2]
[1]Fraunhofer-Institute for Chemical Technology, Pfinztal, Germany
[2]Karlsruhe Institute for Technology, Karlsruhe, Germany

A two-dimensional stationary model of a vanadium oxygen fuel cell is developed in COMSOL Multiphysics®. This energy storage device combines a vanadium flow battery anode and an oxygen fuel cell cathode. The oxygen reduction reaction generates additional water, leading to a degradation of the catalyst performance over time. A logistic function is introduced to the Butler-Volmer equation in order ...

Quick Search

151 - 158 of 158 First | < Previous | Next > | Last