Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

An Overview of Impellers, Velocity Profile and Reactor Design - new

P. Patel[1], P. Vaidya[1], G. Singh[2]
[1]Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
[2]Indian Oil Corporation Limited, Faridabad, Haryana, India

This paper presents a simulation approach to develop a model for understanding the mixing phenomenon in a stirred vessel. The mixing in the vessel is important for effective chemical reaction, heat transfer, mass transfer and phase homogeneity. In some cases, it is very difficult to obtain experimental information and it takes a long time to collect the data. Such problems can be solved using ...

CFD Modeling and Analysis of a Planar Anode Supported Intermediate Temperature Solid Oxide Fuel Cell - new

N. Lemcoff[1], M. Tweedie[2]
[1]Rensselaer Polytechnic Institute Hartford, Hartford, CT, USA
[2]Enthone, West Haven, CT, USA

A planar anode-supported intermediate temperature solid oxide fuel cell operating on syngas fuel at 750°C was analyzed in this study. The effects of varying syngas fuel inlet compositions on species and temperature distributions, water gas shift reaction rate, potential for carbon formation and electrochemistry were considered. A 2-D COMSOL® model was developed which included separate defined ...

Modeling Heat and Moisture Transport During Hydration of Cement-Based Materials in Semi-Adiabatic Conditions - new

E. Hernandez-Bautista[1,2], D. Bentz[1], S. Sandoval-Torres[2], P. Cano-Barrita[2]
[1]National Institute of Standards and Technology, Gaithersburg, MD, USA
[2]Instituto Politécnico Nacional/CIIDIR Unidad Oaxaca, Oaxaca, México

The process of accelerated curing of pre-cast concrete has a significant importance in the thermal behavior of concrete. A multiphysics model that describes hydration and heat and mass transport in cement based materials was developed. The hydration reactions are described by a maturity function that uses the equivalent time concept, thereby describing the change in the degree of hydration based ...

Adaptive Control of Simulated Moving Bed Plants Using Comsol’s Simulink Interface

M. Fütterer
Institut für Automatisierungstechnik, Otto-von-Guericke Universität, Magdeburg, Germany

Preparative chromatography is an important separation method where the simulated moving bed (SMB) technology is an increasingly used separation process for binary mixtures. Several chromatographic columns are arranged in a ring where the feedings and drains are changed cyclically to maintain a continuous separation. For this reason, an adaptive controller is proposed to adjust the flow rates ...

Modeling of Turbulent Combustion in COMSOL Multiphysics®

D. Lahaye[1], L. Cheng[2]
[1]DIAM, EEMCS Faculty, TU Delft, The Netherlands
[2]Tsinghua University, Beijing, China

In the production of high quality materials by a heat treatment, it is indispensable to accurately predict the temperature inside the furnaces being employed. In this work we develop a turbulent combustion model for the heat being released by gas burners inside a shaft kiln. Turbulent combustion is the strongly coupled phenomena of the chemically reacting fuel and oxygen in a turbulent flow. We ...

Modeling of Hydrogel-Based Controlled Drug Delivery System for Breast Cancer Treatment - new

K. Cluff[1], L. Saeednia[2], H. Mehraein [1], R. Asmatulu[2]
[1]Department of Bioengineering, Wichita State University, Wichita, KS, USA
[2]Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA

Polymeric hydrogel is a promising class of drug delivery systems with the controlled release behavior in the body. In-situ forming hydrogels can be injected into the body as a fluid which forms a gel within the body tissue and improve the efficacy of the drugs. Various polymers have been used as in-situ hydrogel formulations. These polymeric formulations can form gels at body temperature while ...

Turbulent Compressible Flow in a Slender Tube

K.O. Lund[1], C.M. Lord[2]
[1]Kurt Lund Consulting, Del Mar, CA, USA
[2]Lord Engineering Corp., Encinitas, CA, USA

Pressure-drop experiments were conducted for the turbulent, compressible flow of air in a small, slender tube, and modeled with COMSOL heat transfer module, and analytically. A scalar integration variable is introduced which integrates the mass velocity [kg/m²s] over the inlet area and iteratively equates this to the input mass flow [kg/s]. For computation, the temperature specification is ...

Kinetics and Reactor Modeling of Methanol Synthesis from Synthesis Gas

H. Bakhtiary, F. Hayer, H. Venvik, A. Holmen
Norwegian University of Science and Technology Trondheim

Methanol synthesis is a typical reaction in heterogeneous catalysis. In this work, we have studied a laboratory fixed-bed reactor packed with a Cu/Zn/Al2O3 catalyst in both adiabatic and isothermal tubular operational modes. A methanol synthesis kinetic model was implemented in COMSOL Reaction Engineering Lab. Both 1D and 2D pseudo-homogeneous dispersion models were applied to describe the mass ...

Computational Fluid Dynamics for Microreactors Used in Catalytic Oxidation of Propane

S. Odiba[1], M. Olea[1], S. Hodgson[1], A. Adgar[1]
[1]Teesside University, School of Science and Engineering, Middlesbrough, United Kingdom

This research deals with the design of suitable microreactors for the catalytic oxidation of volatile organic compound (VOCs), using propane as a model molecule. The microreactor considered consists of eleven parallel channels, in which an Au/Cr/γ-Al2O3-catalyzed combustion reaction takes place. Each channel is 0.5 mm diameter and 100 mm long. The catalytic microreactor was simulated for ...

Sulfur Deactivation Effects on Catalytic Steam Reforming of Methane Produced by Biomass Gasification

P. Sadooghi[1], R. Rauch[1]
[1]Vienna University of Technology, Vienna, Austria

Sulfur, which is incorporated in the biomass structure, is released into the product gas during gasification as hydrogen sulfide. Hydrogen sulfide is known to deactivate nickel based steam reforming catalysts by chemisorption on the metal surface during steam reforming process. Desulfurization has a negative effect on the process efficiency therefore steam reforming has to be run without ...