Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Effects of Flow and Diffusion on Blood Coagulation in Platelet Poor Plasma: a Two-way Coupling Between Hemodynamics and Biochemistry

D. Magnabosco[1,2], H. van Ooijen[2], B. Bakker[2], R. van den Ham[2]
[1]Politecnico di Milano, Milan, Italy
[2]Philips Research, Eindhoven, The Netherlands

Enzyme reactions, blood flow and diffusion in human vasculature play interacting and fundamental roles in blood coagulation. In this complex mechanism, the balance between blood and clot is a delicate equilibrium, whose tight regulation is vital to avoid pathologies such as bleeding and thrombosis. The secondary hemostasis triggered by tissue factor in platelet poor plasma is studied up to fibrin ...

Design and Simulation of Piezoelectric Micropump and Microvalve based Drug Delivery System

D. Samajdar[1], P. Podder[1], A. Bhattacharyya[1], S. Sen[1]
[1]Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, WB, India

In the emerging field of MEMS microfluidics, micropumps and microvalves are two of the most important devices with a wide spectrum of applications such as programmable drug delivery systems, lab-on-a chip devices, µTAS (micro total analysis system), micro electric cooling applications etc. These microfluidic components are dominating the MEMS applications by virtue of their improved performance ...

Design of a Controlled Dosing Scheme for Liquids using a Venturi

M. Dagaonkar[1], V. Kumaran[1], R. Venkataraghavan[1], D. C. Franklin[1]
[1]Unilever R&D, Bangalore, Karnataka, India

Dosing a predetermined quantity of one liquid into another, in a controlled fashion, is a process often encountered in a variety of operations at both industrial and laboratory scales. This process becomes a challenging one if it has to be carried out in a continuous mode, without using any dosing pump and if the dosage levels are very small. A possible simple and elegant solution to the problem ...

Modeling of Transport Phenomena in Metal Foaming

B. Chinè[1], M. Monno[2]
[1]Laboratorio MUSP Piacenza, Italy; ITCR, Esc. Ciencia e Ing. Materiales, Cartago, Costa Rica
[2]Laboratorio MUSP, Piacenza, Italy; Politecnico di Milano, Dip. Meccanica, Milano, Italy

Metal foams are interesting materials with many potential applications in engineering. Foamed metals or alloys include gas voids in the material structure with the real possibility to modify ad hoc their physical properties. Following our previous efforts aimed to simulate and study the foaming process of a metal, we propose in this work a model which considers heat and mass transfer phenomena, ...

Modeling of HTPEM Fuel Cell Start-Up Process by Using COMSOL Multiphysics

Y. Wang[1], D. Uwe Sauer[1]
[1]Electrochemical Energy Conversion and Storage Systems, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, Aachen, Germany

HTPEM fuel cells are considered to be the next generation fuel cells. The electrochemical kinetics for electrode reactions are enhanced by using PBI membrane at an operation temperature between 160-180 °C comparing to LTPEM fuel cells. But starting HTPEM fuel cells from room temperature to an operation temperature is a challenge. In this work, using preheated air to heat up the fuel cells ...

A Parametric Study of Shock Wave Simulations with Help of COMSOL Multiphysics

F. Ferrero[1], R. Meyer[1], M. Kluge[1], V. Schröder[1]
[1]BAM Federal Institute for Materials Research and Testing, Berlin, Germany

Adiabatic compression of gases can work as an ignition source and is still one of the main causes of accidents in chemical plants processing tetrafluoroethylene (Reza and Christiansen, 2007). The ignition of tetrafluoroethylene induced by adiabatic compression has been studied experimentally with a setup which allowed for the rapid opening of a high speed valve connecting two portions of a ...

Modeling Magnetic Configurations for Improved Separations of Magnetic and Non-Magnetic Materials

S. Khushrushahi[1], T.A. Hatton[1], M. Zahn[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Magnetic separation of magnetic liquid phases/particles from non-magnetic liquid phases/particles are needed for applications such as cleaning up oil spills by separating oil and water liquid phases or separating magnetic materials from non-magnetic materials in biomedical and microfluidic applications. Magnetic fluids (also called ferrofluids), in a magnetic field, experience a magnetic force ...

A COMSOL Multiphysics®-based Model for Simulation of Methane-Hydrate Dissociation by Injection of Superheated Carbon Dioxide

M. Gharasoo[1], C. Deusner[1], N. Bigalke[1], M. Haeckel[1]
[1]Department of Marine Geosystems, GEOMAR - Helmholtz Centre for Ocean Research, Kiel, Germany

Immense amounts of methane are stored as gas-hydrate deposits in deep layers of marine sediments. This has raised considerable interest to develop strategies for producing natural gas from marine hydrates. One potential production strategy is the injection of supercritical CO2 into methane hydrate-bearing sand layers to release the CH4 as a gas and sequester the CO2 as hydrate. We used COMSOL ...

Theoretical and Practical Approach for Transdermal Drug Delivery using Microneedle for Successful Skin Penetration

Jeevan J.Mahakud[1], Ziaur Reheman[2]
[1]Department of electronics and Communication engineering, Institute of technical education and research, Bhubaneswar, Odisha, India
[2]Department of electronics and instrumentation engineering, Institute of technical education and research, Bhubaneswar, Odisha, India

With the advent of MEMS, transdermal drug delivery has been developed to increase skin permeability for drug transport. Various microneedle structures have been analyzed theoretically as well as through simulation using COMSOL Multiphysics®. Then computational fluid dynamics has been presented in order to study the behavior of the fluid flow inside the microneedle cavity. In this report, the ...

Investigation of Blade Profiles of Vertical Axis Wind Turbine by Numerical Simulation

S. Yoshioka[1]
[1]Ritsumeikan University, Kusatsu City, Shiga, Japan

There are two types of vertical axis wind turbine, drag-type and lift-type. Drag type wind turbine can rotate in low speed wind condition, although its rotation speed is low. Lift type wind turbine can rotate at higher speed, although it works only in high speed wind condition. This study investigates new blade profile that realize rotation in low wind speed condition and higher rotation speed by ...