Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Pump and Ejector Design in Wastewater Treatment Pilot Equipment - new

G. Actis Grande[1], A. Pezzin[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

Ozone treatment is an oxidative process used in wastewater treatment plant to demolish complex organic molecule. In the case of textile industry is required to adequately remove residual color, demolishing the chromophoric bonds or groups in the dye molecules. A useful method for adding the ozone gas into water and maximize ozone-water mixing to increase mass transfer, is the use of Venturi ...

Coupled Electric-Thermal-Fluid Analysis of High Voltage Bushing

G. Eriksson[1]
[1]ABB, Corporate Research, Västerås, Sweden

Modern power transmission systems are in general designed to operate at high voltages in order to reduce resistive losses generated by high currents. This, however, tends to increase the risk for dielectric breakdown or flashovers if the equipment is not properly designed to withstand the stress. The present work illustrates how multiphysics simulations can be used to analyze and predict the ...

Numerical Modeling of Sampling Airborne Radioactive Particles Methods from the Stacks of Nuclear Facilities in Compliance with ISO 2889 - new

P. Geraldini[1]
[1]Sogin Spa, Rome, Italy

The main objective of this study is to verify the compliance of an ongoing nuclear facilities stack design with the ISO 2889 requirements, during normal and off-normal conditions. In particular, with the numerical simulations, they have been identify well-mixed sample locations along the chimney and the compliance with the International Standard requirements as result of stack flow rate and ...

Comparative Numerical Studies of Scramjet Inlet Performance Using k-? Turbulence Model with Adaptive Grids

V. Gopal[1], R. Kolluru[1]
[1]BMS College of Engineering, Bangalore, Karnataka, India

Scramjet inlet design remains as a key aspect for hypersonic flight. To assess the inlet design, the performance parameters namely; air-capture ratio, total pressure efficiency, inlet drag coefficient, and kinetic energy efficiency are evaluated and analysed. In the current study comparison of performance parameters is carried out by performing numerical computation of 2-D turbulent flow field ...

Numerical Quasi Stationary and Transient Analysis of Annular Linear Electromagnetic Induction Pump

L. Goldsteins[1], L. Buligins[2], Y. Fautrelle[3], C. Biscarrat[1], S. Vitry[1]
[1]CEA Cadarache, Saint Paul lez Durance, France
[2]University of Latvia, Riga, Latvia
[3]Grenoble Institute of Technology, Grenoble, France

In this paper an axisymmetric model of annular linear electromagnetic induction pumps using numerical methods and four approaches (two transient and two quasi-stationary) with different complexity is studied. Comparison of integral characteristics is performed between numerical approaches and also with analytic estimations. Distributions of physical parameters over length and height of channel ...

Understanding the Magnetic Field Penetration in Mesoscopic Superconductors via COMSOL Multiphysics® Software - new

I. G. de Oliveira[1]
[1]Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil

Introduction: One of the main characteristic of the superconductors is its diamagnetic response of applied magnetic fields. The superconductors refuse the penetration of magnetic field into its interior, it is the well know Meissner effect, B=0 into the superconductor sample. However when the applied field reach a determined value, the magnetic field can enter. There are two different ways of ...

Design of High Performance Micromixer for Lab-On-Chip (LOC) Applications

K. Karthikeyan[1] , L. Sujatha[1]
[1]Rajalakshmi Engineering College, Chennai, Tamil Nadu, India

This paper presents the design and simulation of micromixer for Lab-On-Chip (LOC) applications. There are two types of micromixers: one is an active micromixer and another one is a passive micromixer. This paper investigates microfluidic flow characterization and mixing rate of two fluids in a micro- channel. Understanding the microfluidic flow at the micro channel is a develop methods of mixing ...

Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling

A. Travis[1], K. Ekici[1], J. Freels[2]
[1]The University of Tennessee, Knoxville, TN, USA
[2]Oak Ridge National Laboratory, Oak Ridge, TN, USA

A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model’s domain consists of a three-dimensional fuel plate and a two-dimensional coolant channel slice. In simplifying the coolant channel, the computational cost and solution time are both ...

Computational Study on Transition of Oil-Water Flow Morphology due to Sudden Contraction in Microfluidic Channel - new

J. Chaudhuri[1], S. Timung[1], T. K. Mandal[1], D. Bandyopadhyay[1]
[1]Indian Institute of Technology Guwahati, Guwahati, Assam, India

The flow morphology of two immiscible fluids in a microfluidic device finds numerous applications such as emulsification, synthesis of nanomaterials [1], lab-on-a-chip devices and biological analysis [2]. It offers many advantages over the conventional macroscopic devices because of its availability for higher surface to volume ratio, ability to handle small volume of fluids, easier process ...

Multiphysics Simulations of Granular Sludge on the Optimization of Effluent Treatment Plant

S. Gunsekaran [1], R. C. Thiagarajan[1]
[1]ATOA Scientific Technologies Private Limited, Bangalore, India

Multiphysics Simulations of Physico-chemical and Biological Treatment of wastewater is increasing due to the demand for cost efficient plant design and utilization. Among the many processes, a thorough understanding of the settling behavior of an activated granular sludge in the secondary settler of an Effluent Treatment Plant (ETP) is critical for the plant designers to determine the efficiency ...