Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

COMSOL Multiphysics for Efficient Solution of a Transient Reaction-Diffusion System with Fast Reaction

M.K. Gobbert[1], A. Churchill[1], G. Wang[1], and T.I. Seidman[1]
[1]Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA

A reaction between chemical species is modeled by a particular reaction pathway, in which one reaction is very fast relative to the other one. The diffusion controlled reactions of these species together with a reaction intermediate are described by a system of three transient reaction diffusion equations over a two-dimensional spatial domain. In the asymptotic limit of the reaction parameter ...

Propagation Of Tsunamis Over Large Areas Using COMSOL

C. Cecioni, and G. Bellotti
University of Roma TRE, DSIC, Rome, Italy

This paper presents a numerical model based on the mild-slope equation (MSE for short) solved using the PDE mode of the software COMSOL Multiphysics suitable to reproduce the propagation of small amplitude tsunamis in the off-shore field. The model solves the governing equations in the frequency domain and allows the reproduction of the frequency dispersion for broad banded spectrum sea states. ...

Transport Phenomena of Bubbles in a High Viscous Fluid

F. Pigeonneau
CNRS/Saint-Gobain, France

Dr. Franck Pigeonneau is currently working in the joint laboratory between the Centre National de la Recherche Scientifique (CNRS) and the company Saint-Gobain. He received his Ph. D. in 1998 from the University Pierre et Marie Curie (Paris, France). His main research activities are devoted to the transport phenomena in high viscous fluids relevant for glass melting processes. He is using COMSOL ...

Stabilized Finite Element Modeling of the Flow Through Porous Medium

Khodabakhshi, G., Parvazinia, M.
Loughborough University, U.K.

The standard Galerkin method employing standard finite elements is not a robust approach for transport problmes exhibiting multiscale behaviour [1]. The elements enriched with bubble functions improve the stability of the solution dramatically. It is shown that basically all of stable methods are derived from particular class of subgrid scale models [2]. To prevent it, multiscale finite ...

FEMLAB Solution of the Creeping Flow Equations for a Particle in Stagnation Point Flows in the Vicinity of a Wall

Pasol, L., Feuillebois, F.

The fluid velocity and pressure of the floweld around axed spherical particle embedded in an unperturbed axisymmetric creeping flow in the vicinity of a wall is calculated analytically by the method of bipolar coordinates. Results are obtained with a 10-16 precision allowing a comparison with the results from a FEMLAB calculation. Results from the analytical calculation exhibit several cell ...

Modeling Instabilities in Volatile Liquid Films Flowing over Locally-Heated Substrates using COMSOL

N. Tiwari, and J. M. Davis
Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA

The dynamics and stability of a liquid film flowing under the influence of gravity over a planar surface with a rectangular heater are modeled using COMSOL. The temperature variation at the liquid-air interface near the heater induces a gradient in surface tension, or Marangoni stress, that distorts the film shape and gives rise to a pronounced ridge.The shape of the flowing film near the heater ...

Microscale Modelling of the Frequency Dependent Resistivity of  Porous Media

J. Volkmann, O. Mohnke, N. Klitzsch, and R. Blaschek
E.ON Energy Research Center, RWTH-Aachen, Aachen, Germany

The frequency dependent electrical impedance of porous media is studied by modelling the charge transport in the electrolyte filled pore space using COMSOL Multiphysics.  The corresponding experimental method, called Spectral Induced Polarization (or Impedance Spectroscopy), shows a frequency dependent phase shift between a measured electric current and an applied alternating voltage. It is ...

Inverse Estimation of the Flow Resistivity Tensor of Open-Cell Foams from Experimental Data and Darcy’s Flow Simulations

C. Van der Kelen, P. Göransson, and N-E.Hörlin
Marcus Wallenberg Laboratory for sound and vibration research, KTH Aeronautical and Vehicle Engineering, Stockholm, Sweden

The flow resistivity tensor, which is the inverse of the viscous permeability tensor, is one of the most important material properties for the acoustic performance of open cell foams, used in acoustic treatments. Due to the manufacturing processes, these foams are most often geometrically anisotropic. This paper discusses the estimation of the flow resistivity tensor using an improvement of a ...

Objects in a Windtunnel Simulated With COMSOL

H. van Halewijn
Fontys Hogeschool
Applied Physics
Eindhoven, The Netherlands

For the educational program of Fluid Dynamics at the Fontys Hogeshool of Applied Physics, a wind tunnel was developed for tests of flow profiles of objects, such as a ball, cube or plate. Students are expected to measure the air resistance of a variety of objects, and verify the measurements with the turbulent CFD module of COMSOL. The measurements and the COMSOL simulations match nicely, and ...

Thermo-Fluid Dynamics of Flue Gas in Heat Accumulation Stoves: Study Cases

D. Rossi[1], P. Scotton[1]
[1]University of Padova, Department of Geosciences, Padova, Italy

The research aims to clarify some aspects of the thermo-fluid dynamics of woody biomass flue gas, within the twisted conduit inside the heat accumulation stoves, and exposes also some analysis about the heat transport and heat exchange processes. The high temperature flue gas flows in the conduit, releasing heat to the refractory. The heat stored in the refractory is then released to the ...

Quick Search