Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Traveling Plasma Wave Levitation of Objects Supported by Coanda Effect - new

R. Eisenschmid[1]
[1]OPTIMA pharma GmbH, Schwäbisch Hall, Germany

Electrostatically excited plasma waves can induce a “plasma wind” in the surrounding media or air. The lifted object has a shape of a flying saucer, just for better illustration. A travelling plasma wave propulsion requires a pre-ionized media around the surface and a travelling electrostatic field. A simplified plasma model was used to set up an EFD (electro fluid dynamic) approach into a ...

Simulation of Spiral-Tube Heat Exchangers in COMSOL Multiphysics® Software

K. O. Lund [1], S. M. Lord [2],
[1] Kurt Lund Consulting (COMSOL Certified Consultant), Del Mar, CA, USA
[2] SML Associates, Encinitas, CA, USA

A frequently occurring geometry for heat exchangers is that of a long tube wound into a helix or spiral around a core volume. There is to be heat exchange between the tube and the gases (or solids) in the core. However, the length scales of these two parts of the geometry are very different, thus complicating the interface between the tube and the core processes. Usually, the tube is too ...

The Use of COMSOL in Teaching Heat and Moisture Transport Modeling in Building Constructions

A.W.M. van Schijndel[1] and H.L. Schellen[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

This paper presents the use of the multiphysics package COMSOL for teaching heat and moisture transport modeling in the research area of building physics. It includes a description on how COMSOL works and six exercises with 2D, 3D, steady state and transient models. It is concluded that COMSOL is a very useful tool for this kind of engineering education. Especially, the abstraction level of ...

Optimization of the Design of a GEM Tracker Based on Gas Flow Simulations with COMSOL

V. De Smet[1], V. Bellini[2], E. Cisbani[3], F. Noto[2], F. Mammoliti[2], C. M. Sutera[4], and M. Mangiameli[4]
[1]Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy; Haute Ecole Paul-Henri Spaak, ISIB, Bruxelles, Belgium
[2]Dipartimento di Fisica ed Astronomia, Università di Catania, Catania, Italy; INFN – Sezione di Catania, Catania, Italy
[3]INFN – Sezione di Roma - Sanità Group, Roma, Italy; Italian National Institute of Health, Roma, Italy
[4]INFN - Sezione di Catania, Catania, Italy

A Computational Fluid Dynamics study has been performed for a Gas Electron Multiplier (GEM) detector of high energy charged particles, currently under development as part of a new tracker of the high luminosity spectrometers in Hall A at Jefferson Lab. By gradual modifications of the geometry simulated in COMSOL, the design of the frame separating two GEM foils has been optimized with the aim ...

SD Numerical Simulation Technique for Hydrodynamic Flow Gas-Solids Mixing

I. Mantilla[1], S. De Vicente[2]
[1]National University of Engineering, Lima, Perú
[2]Polytechnic University of Madrid, Madrid, Spain

We formulate a new mathematical model of gas-solids mixing hydrodynamic flow [1] in a combustion chamber with a fluid bed system used in the combustion of mineral coal waste. This model in study is called Model Gas-Solids Mixing and it is constructed by averaging the conservation equations (mass and momentum) for a two-phase flow, which takes into account the existence of a small parameter rho ...

Numerical Investigation of Strouhal Frequencies of Two Staggered Bluff Bodies

Eswaran M[1], P. Goyal[1], Anu Dutta[1], G.R. Reddy[1], R. K. Singh [1], K.K. Vaze[1]
[1]Bhabha Atomic Research Centre, Mumbai, India

A 2-D unsteady viscous flow around two cylinders is studied by numerical solutions of the unsteady Navier-Stokes equations with a finite element formulation using COMSOL Multiphysics®. The results of a numerical investigation of the Strouhal frequencies of two identical, stationary, parallel circular cylinders arranged in staggered configurations is presented in this paper. A simple two cylinder ...

Radiation Force Effect at the Dielectric Water-Air Interface - new

G. V. B. Lukasievicz[1], N. G. C. Astrath[2], L. C. Malacarne[2], M. L. Baesso[2], S. E. Bialkowski[3]
[1]Universidade Tecnológica Federal do Paraná, Toledo, PR, Brazil
[2]Universidade Estadual de Maringá, Maringá, PR, Brazil
[3]Utah State University, Logan, Utah, USA

The radiation force effects on the surface displacement can be calculated by solving the Navier-Stokes equation with appropriated boundary conditions. The surface deformation can be described by the radiation pressure as well as those forces due to gravity and surface tension. We used the photomechanical mirror (PM) method to measure the time-evolution of the nanometer deformation generated on ...

Numerical Calculation of Effective Density and Compressibility Tensors in Periodic Porous Media: A Multi-Scale Asymptotic Method

C. Lee[1], M. Leamy[1], and J. Nadler[2]

[1]School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
[2]Georgia Tech Research Institute (GTRI), Georgia Institute of Technology

A major issue in predicting and controlling (via design) absorption properties of rigid porous media is the determination of the frequency-dependent effective density and compressibility tensors. Unlike previous research efforts which employ in-house and, oftentimes, multiple numerical procedures for determining these two essential tensors, we formulate their solution in terms of a set of micro ...

Collection efficiency of particles on a ribbon in a turbulent air flow

R. Divigalpitiya[1]
[1]3M Canada Company, London, Ontario, Canada

The collection efficiency of aerosol particles on a ribbon in a turbulent flow is analyzed using COMSOL Multiphysics. The flow field is solved using Chemical Engineering module and particle tracing plots are obtained using equations of motion including Khan and Richardson drag force. A MATLAB script is used to count the captured particles on the ribbon and determine the capture efficiency with ...

Investigation of Blade Profiles of Vertical Axis Wind Turbine by Numerical Simulation

S. Yoshioka[1]
[1]Ritsumeikan University, Kusatsu City, Shiga, Japan

There are two types of vertical axis wind turbine, drag-type and lift-type. Drag type wind turbine can rotate in low speed wind condition, although its rotation speed is low. Lift type wind turbine can rotate at higher speed, although it works only in high speed wind condition. This study investigates new blade profile that realize rotation in low wind speed condition and higher rotation speed ...