Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

A Coupled Analysis of Heat and Moisture Transfer in Soils

E. Evgin, J. Infante Sedano, and Z. Fu
University of Ottawa
Ottawa, ON

This paper is a part of a study on energy piles for heating and cooling of buildings. Energy piles are used for two reasons: (1) to transfer structural loads to foundation soils, and (2) to transfer heat from foundation soils to the building for space heating in winter time and for cooling purposes in summer time by transferring heat from the building to the foundation soils. The efficiency of ...

Transport in reactive porous media containing biofilms

G. Debenest, Y. Aspa, and M. Quintard
IMFT, GEMP group, Toulouse, France

The objective of this presentation is the evaluation of effective bulk transport properties of reactive porous biofilm. We present our microscale model that accounts for both momentum and mass balances.

Modeling Geophysical Fluid Flows Using COMSOL: Working Towards a Hydrodynamic Model of the Chesapeake Bay

M. Boe, R. Malek-Madani, D. R. Smith, and M. E. C. Vieira
United States Naval Academy, Annapolis, MD, USA

The outline for this presentation is:Chesapeake Bay BasicsMathematical FrameworkLinear Western Intensification Models -Stommel (1948), Munk (1950)Non-linear equations solved in rectangular geometriesThree-dimensional Chesapeake Bay bathymetry attempts

Earthquake and Volcano Clustering at Mono Basin (California)

D. La Marra[1], A. Manconi[2], and M. Battaglia[1]
[1]Dept of Earth Sciences, University of Rome “La Sapienza”, Roma, Italy
[2]IRPI-CNR, Strada delle Cacce, Torino, Italy

This study investigates the feedback between fault slip and dike intrusions during the Mono-Inyo eruption sequence of ~1350 A.D. (Mono Basin, California). We perform an extensive validation of 3D finite element models, implemented in the Structural Mechanics module of COMSOL Multiphysics, against standard analytical solutions of fault dislocation in a homogeneous elastic flat halfspace. The ...

Erosion Of Buffer Caused By Groundwater Leakages Based On ESM-Application

O. Punkkinen[1], A. Jorma[1], K. Kari[2], and M. Olin[3]
[1]B+Tech, Helsinki, Finland
[2]Posiva, Eurajoki, Finland
[3]VTT, Espoo, Finland

In this work the issue of saturation phase erosion caused by groundwater leakages was approached both experimentally and computationally by employing COMSOL\'s Earth Science Module. We evaluated the total mass of eroded bentonite out of a cylindrical erosion channel both numerically and experimentally, and studied its dependence on time. It was observed that logarithmic eroded mass loss as a ...

Coupling Hydrodynamics and Geophysics with COMSOL Multiphysics: First Approach and Application to Leachate Injection in Municipal Waste Landfills

C. Duquennoi[1], S. Weisse[1], R. Clement[1], and L. Oxarango[2]
[1]Cemagref, HBAN research unit, Antony, France
[2]LTHE, Grenoble, France

The efficiency of bioreactor lanfills depends on a homogeneous distribution of leachate in the waste body. Therefore, optimisation of leachate injection systems is a challenging issue for operators. Most studies have shown that surface Electrical Resistivity Tomography (ERT) can be a suitable method to study moisture distribution (2D and 3D). But resistivity inversion models used to date are ...

BHE Field Design by Superposition of Effects in Space and Time

S. Lazzari[1], E. Zanchini[1]
[1]DIENCA - University of Bologna, Bologna, Italy

A design method for BHE fields in the absence of groundwater flow is presented, based on the superposition of effects. The effects of any periodic heat load with a period of one year can be obtained by a weighted sum of the effects of a monthly unit step heat load, properly displaced in time. The interference among BHEs is evaluated by the superposition of effects in space. The result of the ...

An Extension of Lauwerier’s Solution for Heat Flow in Saturated Porous Media

S. Saeid[1] and F.B.J. Barends[2]
[1]Technical University of Delft, Delft, The Netherlands
[2]Deltares and TU-Delft, Delft, The Netherlands

One of the crucial topics in this century is sustainable energy. In this respect, the exploitation of geothermal energy from deep hot aquifers becomes opportune. Hence, insight is required in the heat balance of potential aquifer systems. Essential issues are convection, conduction and dispersion. This article focuses on Lauwerier’s problem. As an extension, it is suggested that beside ...

FEMLAB® Performance on 2D Porous Media Variable Density Benchmarks

Holzbecher, E.
Humboldt Universität Berlin, IGB, Berlin, GERMANY

Variable density problems are suitable test-cases for multi-physics codes, as the interaction between flow and transport processes is a characteristic of the observed phenomena. This contribution focuses on density-driven flow benchmarks in porous media. Here FEMLAB® results are shown for the Henry model concerning stationary saltwater intrusion, and the Elder heat convection experiment in a ...

Effect of S-p Relation Model on DNAPL Migration Simulation Result

H. Ishimori[1], and K. Endo[1]
[1]National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan

To consider effective counter measures against ground water contaminated with dense non-aqueous phase liquids (DNAPLs) such as chlorinated solvents, it is first important to understand the mechanism of their migration in heterogeneous aquifer. In addition, numerical analysis models to simulate such a complex migration in heterogeneous aquifer are required. The displacement pressure, which is ...

Quick Search