Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

2D Simulations and Electro-Thermal Analysis of Microheater Designs using COMSOL for Gas Sensor Applications

G. Velmathi, N. Ramshanker, and S. Mohan
Department of Instrumentation, Indian Institute of Science, Bangalore, Karnataka, India

Microheaters have been widely investigated because of their extensive applications in gas sensors, flow rate sensors and other Microsystems. The geometric optimization for the microheater was performed by simulating a wide range of possible geometries using COMSOL Multiphysics, a commercial Finite Element Analysis (FEA) package. The simulated results of Microheaters having an improved temperature ...

Modeling of a Magnetocaloric System for Electric Vehicles

A. Noume[1], C. Vasile[1], M. Risser[1]
[1]National Institute of Applied Science (INSA), Strasbourg, France

In automotive industry, regardless the type of engine we use, heating and air-conditioning is responsible for the highest energy consumption among all the auxiliary systems all over the year. For conventional vehicles with thermal engines, the heating of the internal space is easy obtainable because of the heat waste from the engine. For the electric vehicles, as the energy is delivered by the ...

Simulation of Geomechanical Reservoir Behavior during SAGD Process Using COMSOL Multiphysics®

X. Gong[1], R. Wan[1]
[1]University of Calgary, Calgary, AB, Canada

THM (Thermo-Hydro-Mechanical) behavior of the reservoir during SAGD (Steam-Assistant-Gravity-Drainage) was studied through a proper constitutive modeling of the porous media. Specifically, a generalized density-stress-fabric dependent elasto-plastic model with stress-dilatancy and plastic damage as main ingredients was implemented into COMSOL Multiphysics®, to model geomechanical behavior during ...

Thermal Analysis for the Solar Concentrating Energy and Induction Heating for Metals

A. Rojas-Morín[1], Y. Flores-Salgado[2], A. Barba-Pingarrón[1], R. Valdéz-Navarro[1], F. Mendéz[1], O. Alvarez-Brito[3], M. Salgado-Baltazar[1]
[1]Facultad de Ingeniería, Universidad Nacional Autónoma de México, Ciudad Universitaria, D.F. México
[2]DGTIC, Universidad Nacional Autónoma de México, Ciudad Universitaria, D.F. México
[3]Programa de Posgrado en Ingeniería, Universidad Nacional Autónoma de México.

In this paper, we simulated the heating of a work piece by coupling two heat sources. Concentrated solar energy was applied at the bottom of the work piece, which generated a heat flux from the parabolic solar dish concentrator. Subsequently, induction heating was applied, which generated Eddy currents that circulated through the work piece and heated the surface of the material. A numerical ...

Excimer Laser-Annealing of Amorphous Silicon Layers

J. Förster, and H. Vogt
Institute of Electronic Components and Circuits
University Duisburg-Essen
Duisburg, Germany

A one-dimensional model of Excimer Laser-Annealing of amorphous silicon layers which are irradiated with a KrF excimer laser is described. For realisation, the application mode heat transfer in solids is used. The model predicts a melt threshold for the energy density of the laser of 88.5 mJ/cm^2. It also predicts a linear increase of the melt duration with a slope of approximately 625 ...

Multiphysics Approach of the Performance of a Domestic Oven

N. Garcia-Polanco[1], J. Capablo[1], J. Doyle[1]
[1]Whirlpool Corporation, Cassinetta di Biandronno (VA), Italy

The heat and mass transfer processes occurring in a domestic oven is in detailed analyzed in this work, with the final objective of improving the global energy efficiency of the system. A 3D Finite Element model developed with a Multi-physics approach is validated with the experimental data from the standard test for energy consumption of the European Union (EN 50304:2001). In this test a brick ...

Multiscale Modeling of Polymer Crystallization

R. Spina[1], M. Spekowius[2], C. Hopmann[2]
[1]Dept. of Mechanics, Mathematics and Management (DMMM), Politecnico di Bari, Bari, Italy.
[2]Institute of Plastics Processing (IKV), RWTH Aachen, Aachen, Germany.

The manufacturing of high quality injection molded parts requires a deep understanding of material properties, process parameters and product design. The behavior of a polymer during the injection molding process and the performance of the final part are strongly determined by the material structure formed during filling and cooling. The main objective of the presented work is to describe the ...

Simulating Experimental Conditions of the HIIPER Space Propulsion Device

A. Krishnamurthy[1], G. Chen[1], B. Ulmen[1], D. Ahern[1], G. Miley[1]
[1]University of Illinois at Urbana - Champaign, Urbana, IL, USA

The Helicon-Injected Inertial Plasma Electrostatic Rocket (HIIPER) is a two-stage electric propulsion system comprising of a helicon plasma source and an inertial electrostatic confinement (IEC) device for plasma production and acceleration, respectively. Several diagnostics such as a Faraday cup, spherical Langmuir probe, and gridded energy analyzer have been developed for analyzing various ...

Fluid-Thermal Analysis of an Inverter with Air Cooling

R. V. Arimilli[1], A. H. Nejad[1], K. Ekici[1]
[1]The University of Tennessee, Knoxville, TN, USA

A new simple air-cooled inverter design is numerically investigated using COMSOL Multiphysics® software. The thermal-fluid analysis is based on a three-dimensional conjugate heat transfer model in which the flow field is assumed to be laminar. A rigorous mesh convergence was performed to ensure that the overall energy balance error is within engineering accuracy while the computational cost is ...

Enthalpy Porosity Method for CFD Simulation of Natural Convection Phenomenon for Phase Change Problems in the Molten Pool and its Importance during Melting of Solids

Priyanshu Goyal[1], Anu Dutta[1], V.Verma[1], I. Thangamani[1], R.K. Singh[1]
[1]Bhabha Atomic Research Centre, Mumbai, India

Shielded transportation casks are commonly used for transportation and storage of radioactive waste materials. Design approval of such casks by regulatory authority is subject to its compliance with a thermal test (among other tests) Due to exposure of cask to fire , there is a possibility of melting of the shielding material (lead) used for the cask and need to evaluate extent of melting. ...

Quick Search