Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Solar Cell Cooling and Heat Recovery in a Concentrated Photovoltaic System

M. Cozzini[1]
[1]Fondazione Bruno Kessler (FBK), Renewable Energies and Environmental Technologies (REET) Unit, Trento, Italy

Concentrated photovoltaic systems with high efficiency solar cells are being widely investigated, aiming at improving the cost-efficiency balance in the solar energy field. Different cell types are in use: e.g., high concentration triple junction cells, reaching efficiencies of the order of 35 - 40 % at 1000 suns, and medium concentration mono-crystalline silicon cells, with efficiencies of the ...

Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor Using COMSOL

J.D. Freels[1], P.K. Jain[1], R.W. Hobbs[1]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA

The Oak Ridge National Laboratory (ORNL) is developing technology to re-establish the capability to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of in-capsulated neptunium oxide (NpO2) and aluminum ...

Numerical Modeling and Performance Optimization Study of a Dehumidification Process in Nuclear Waste Storage

P. Geraldini[1]
[1]Sogin Spa, Rome, Italy

One of the main parameters to consider during the nuclear waste storage design phase is the drum corrosion risk. The humid-air corrosion models available in literature predict that, for carbon steel, the phenomena start to become appreciable for relative humidity (RH) values close to 65%. In general, the corrosion rate increases exponentially with relative humidity above the RH threshold. To ...

Computational Analysis for Induction Heating of Moving Wire

Ishant Jain[1], S K Ajmani[1]
[1]Tata Steel Limited, Research and Development, Jamshedpur, Jharkhand, India

This is an preliminary attempt to simulate the complicated tunnel induction furnace, used for the heating of the long wire moving at a certain speed to achieve the desired mechanical properties. The furnace consists of 108 numbers of turns, with embedded cooling channel inside to cool down the copper coils, and the cross section of the coils are rectangular in shape. Based on the complexity of ...

Bobbin Tool Friction Stir Welding: A Moving Geometry Model

J. Hilgert[1], H. Schmidt[2], and J. Dos Santos[1]

[1]GKSS Forschungszentrum GmbH, Geesthacht, Germany
[2]Danmarks Tekniske Universitet, Kgs. Lyngby, Denmark

Based on the example of a bobbin tool Friction Stir Welding process model a technique to model thermal processes with a moving geometry in COMSOL is introduced. The described approach allows modeling the transient temperature fields in setups that are governed by a large relative movement of different parts of the geometry. The movement of the tool is realized in a sequence of discrete time ...

Theoretical Modeling of a Thermophotovoltaic System

Mattarolo, G., Bard, J.
ISET, Institut für Solare Energieversorgungstechnik, Kassel

Thermophotovoltaic (TPV) is an emerging technology based on the direct conversion of thermal radiation coming from a heat source into electricity by using photovoltaic (PV) cells. The first target for the TPV research is to break the threshold of 10% of efficiency, which would allow to start the commercialization of such technology in different applications. Defining and simulating a ...

Multiphase, Dual Polymer Injection Molding and Cooling of an Open Cavity to Form both Distinct and Graduated Material Properties within a Complex Three-Dimensional Body

M.S. Yeoman[1]
[1]Continuum Blue Ltd, Forest Row, United Kingdom

With the advancement of medical devices and implants, many now require more advanced nonlinear, hyper-elastic materials such as elastomers to be extensively utilized in the body. This combined with the need to allow for considerably different, varying and graduated material responses within the three-dimensional device, poses a difficult challenge to manufacturing an elastomeric implant in a ...

Multiphysics Modeling of Radio-Frequency Cooking

M. Rayner
Department of Food Technology, Engineering and Nutrition, Faculty of Engineering, Lund University, Lund, Sweden

A radio frequency-based cooking process for a meat product was modeled using the Heat Transfer Module. Included wasa term for internal heat generation as generated by Joule heating caused by an applied electric field. The dielectric and thermal properties were implemented as a function of temperature. The resulting simulation showed good agreement with experimental end point temperature data from ...

A Heat Transfer Model for Ugitech’s Continuous Casting Machine

C. Deville-Cavellin
Dr.
Liquid Metal Metallurgy and Solidification department
Ugitech’s Research Center, Ugine, France

Dr. Christian Deville-Cavellin is a Research Engineer at Ugitech's Research Center, since 1995. Ugitech, member of the Schmoltz & Bickenbach group, is a stainless steel, long products producer. C. Deville-Cavellin is responsible for all research topics related to liquid metal metallurgy and solidification. He also keeps an expert role in machinability, within one of the french public ...

2D Simulations and Electro-Thermal Analysis of Microheater Designs using COMSOL for Gas Sensor Applications

G. Velmathi, N. Ramshanker, and S. Mohan
Department of Instrumentation, Indian Institute of Science, Bangalore, Karnataka, India

Microheaters have been widely investigated because of their extensive applications in gas sensors, flow rate sensors and other Microsystems. The geometric optimization for the microheater was performed by simulating a wide range of possible geometries using COMSOL Multiphysics, a commercial Finite Element Analysis (FEA) package. The simulated results of Microheaters having an improved temperature ...

Quick Search