Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation and Design of an Oven for PET Blow Molding Machines

M. Mor[1], C. Seneci[1], V. Zacché[1], C. Remino[1], G. Petrogalli[1], D. Fausti[1]
[1]Polibrixia, Brescia, Italy

This paper presents the study and design of a new generation oven for PET blow-molding machines. The design faced several technical challenges such as: the temperature distribution in the critical areas, the sharp curvature radius, the high PET thermal inertia and the presence of boundary elements, which affected the overall performances. The work included an analysis of the preform material and ...

Heat Transfer Modeling and Analysis of a Rotary Regenerative Air Pre-heater

R. K. Krishna, R. Ramachandran, and P. Srinivasan
Birla Institute of Technology and Science
Pilani
Rajasthan, India

An attempt has been made to sustain the efficiency of an air pre-heater(APH) in the long run. The APH is modeled using COMSOL Multiphysics in 3D and fed with real life conditions. Upon Heat transfer analysis, the temperature profile was found out and from that, the regions undergoing maximum thermal fatigue stress was identified. The plates of the APH to the periphery are subjected to maximum ...

Simulation of the Temperature Profile During Welding with COMSOL Multiphysics® Software Using Rosenthal's Approach - new

A. Lecoanet[1], D. G. Ivey[1], H. Henein[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

A 3D finite element analysis is carried out, using COMSOL® software, to reproduce the thermal profile obtained with Rosenthal’s equation. The implemented heat transfer equation has been modified as a means to approximate Rosenthal’s solution. An analysis of the differences between the simulation and Rosenthal’s solution, when the geometry of the domain and the source are changed, has been ...

Simulation of Cascaded Thermoelectric Devices for Cryogenic Medical Treatment - new

P. Aliabadi[1], S. Mahmoud[1], R. K. AL-Dadah[1]
[1]Mechanical Engineering Department, University of Birmingham, Birmingham, UK

This study is focused on using a thermoelectric device (TED) as an alternative to the cryogenic liquid for cooling cryosurgical probe used for cancerous tissue ablation. Thermoelectric device, namely Peltier, is a solid state device which converts electric current to thermal gradient. In past years thermoelectric devices have been successfully utilized in refrigeration and air conditioning ...

Numerical Simulation of Si Nanosecond Laser Annealing by COMSOL Multiphysics

M. Darif, and N. Semmar
GREMI-UMR6606, CNRS-Universite d’Orleans, Orléans, France

A 2D transient heat conduction model was created in COMSOL Multiphysics to simulate temperature changes in material irradiated by a KrF laser beam confined on silicon’s surface. In this paper, the obtained results are shown and discussed in case of bulk Silicon. The heat source is distributed in time with ‘gate’ and ‘gaussian’ shapes. The thermal properties values ...

Modeling Integrated Thermoelectric Generator-Photovoltaic Thermal (TEG-PVT) System - new

R. Kiflemariam[1], M. Almas[1], C. Lin[1]
[1]Department of Mechanical & Materials Engineering, Florida International University, Miami, FL, USA

2D steady state heat conduction-electric current model was created in COMSOL Multiphysics® software to study the performance of thermoelectric generator-photovoltaic-thermal (TEG-PVT) system. Four different cases were studied in the paper. In case 1, PV cells without concentrator was simulated while in case 2, concentrator ratio range from 2 to 5 was utilized, In case 3, the convection heat ...

Design and Analysis of Micro-Heaters for Temperature Optimization using COMSOL Multiphysics for MEMS Based Gas Sensor

V. S. Selvakumar[1], L. Sujatha[1]
[1]Rajalakhmi Engineering College, Chennai, Tamil Nadu, India

Micro-Heaters are the key components in sub-miniature micro-sensors, especially in gas sensors. The metal oxide gas sensors utilize the properties of surface adsorption to detect changes in resistance as a function of varying concentration of different gases [5]. To detect the resistive changes, the heater temperature must be in the requisite temperature range over the heater area. Hence the ...

Enthalpy Porosity Method for CFD Simulation of Natural Convection Phenomenon for Phase Change Problems in the Molten Pool and its Importance during Melting of Solids

Priyanshu Goyal[1], Anu Dutta[1], V.Verma[1], I. Thangamani[1], R.K. Singh[1]
[1]Bhabha Atomic Research Centre, Mumbai, India

Shielded transportation casks are commonly used for transportation and storage of radioactive waste materials. Design approval of such casks by regulatory authority is subject to its compliance with a thermal test (among other tests) Due to exposure of cask to fire , there is a possibility of melting of the shielding material (lead) used for the cask and need to evaluate extent of melting. ...

Simulation of Geomechanical Reservoir Behavior during SAGD Process Using COMSOL Multiphysics®

X. Gong[1], R. Wan[1]
[1]University of Calgary, Calgary, AB, Canada

THM (Thermo-Hydro-Mechanical) behavior of the reservoir during SAGD (Steam-Assistant-Gravity-Drainage) was studied through a proper constitutive modeling of the porous media. Specifically, a generalized density-stress-fabric dependent elasto-plastic model with stress-dilatancy and plastic damage as main ingredients was implemented into COMSOL Multiphysics®, to model geomechanical behavior during ...

Stefan's Problem: Validation of a One-Dimensional Solid-Liquid Phase Change Heat Transfer Process

D. Groulx, and W. Ogoh
Dalhousie University, Halifax, NS, Canada

A 1D phase change problem, known as Stefan’s problem, for which analytical solutions are available, is solved as a 2D problem using COMSOL Multiphysics. The PCM medium is semi-infinite, initially solid at its melting temperature Tm, and at t = 0, the wall temperature is raised to Tw > Tm, prompting the PCM to start melting, from pure conduction, in a linear fashion starting at x = 0. The ...

Quick Search