Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Thermal Analysis Modeling of a High Current Solid Target for Radioisotope Production

S.-K. Kim1, S.-R. Kim2, and J. Kim1
1Korea Institute of Radiological and Medical Sciences (KIRAMS), Korea
2Hanil Nuclear Co., Ltd., Korea

The large-scale production of various radioisotopes is usually carried out with a disk type target system in which solid target materials are located in a stack and a cooled by forced water-cooling. Although the production yields of radioisotopes can be enhanced by employing high currents of proton beams, the maximum beam powers (beam energy multiplied by beam currents) deposited on targets is ...

Multiphysics Process Simulation of the Electromagnetic-Supported Laser Beam Welding

M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmeier
BAM Federal Institute for Materials Research and Testing
Berlin, Germany

The article deals with the magnetically-supported high-power full-penetration laser beam welding of aluminum. A stationary simulation was conducted accounting for the effects of natural convection, Marangoni convection and solid-liquid phase transition as well as an electromagnetic volume source term. An ac magnet below the weld specimen induces eddy currents. Consequently, Lorentz forces occur ...

Numerical Analysis of Heating and Ablating Non-Pyrolitic Materials

A. Davidy

In this paper a two dimensional time dependent model is developed and assessed to describe the interrelated processes of conduction, convective heating and ablation of non pyrolytic ablative material. An aerothermochemical analysis for the process of non-pyrolitic composite material regression in advanced solid-propellant rocket motors has been conducted. The analytical approach is similar in ...

Simulation and Performance Analysis of Nanowire Design with Different Variants

Boopathi S[1], Ms.E.Malar[1], Deepan Chakravarthi P[1]
[1]Department of Biomedical Engineering, PSG College of Technology, Coimbatore, Tamil Nadu, India

This paper deals with an integrated numerical and experimental analysis work aiming at the investigation of the thermal stress on nanowires in electronic gadgets especially computers and mobile phones. The comparative study of the nanowires are analyzed through the Thermal Stress physics using different variants such as Cu, Al, ZnO, Si(c), SiO2 which can be used in sensors, solar cells, LCD, ...

Delamination of Sub-Crustal Lithosphere

P. Vincent[1], E. Humphreys[2]
[1]College of Earth, Ocean, & Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
[2]Department of Geological Sciences, University of Oregon, Eugene, OR, USA

Introduction: Lithospheric delamination beneath the western U.S. is believed to be the driving mechanism responsible for the evolution of magmatic and topographic features observed at the surface in the western U.S.. This process requires hot asthenosphere to be in contact with the underside of cold sub-crustal lithosphere and believed to be initiated by the Yellowstone hot spot plume that due ...

Simulation of a Multilayer Thermal Regulator for an Optical Reference

J.A. Ospina[1] and E. Canuto[1]
[1]Politecnico di Torino, Torino, Italy

The research project under which the COMSOL simulations are performed deals with multilayer and fine thermal control of an optical reference cavity for space applications. The cavity, made of Ultra Low Expansion glass (Corning ULE), must be kept close to the zero expansion temperature of the glass (close to room temperature). The target can only be met by active control, while leaving the cavity ...

Thermal Modeling of Devices Realizing Temperature Fixed-Points

V. Le Sant, and G. Failleau
Laboratoire National d'Essais, Paris, France

Within the framework of its thermal metrology activities and, in particular, in the context of a European project, LNE has recently developed a new device for the realization of the ITS-90 fixed-points with the aim of reducing uncertainties.Concurrently with this new device, a numerical thermal model has been developed, using COMSOL, to study heat transfer in temperature fixed points. This ...

The Use of COMSOL to Solve Hygrothermal Building Physical Problems Related to Insulating High-rise Building Facades

H. L. Schellen, A. W. M. van Schijndel, and E. Neuhaus
Department of Building and Architecture, Eindhoven University of Technology, Eindhoven, The Netherlands

In the Netherlands, high-rise buildings from 1960 and before were hardly insulated. To improve the thermal performance of these buildings, the facades may be retrofitted with insulating material. Energy losses will be reduced and thermal comfort will be improved by higher indoor surface temperatures. Problems, however, may be introduced by thermal bridge effects of anchors, floors and indoor ...

FEM Analysis of Micromachined Flow Sensor with Wheatstone Bridge Read-out

A. Talic[1], S. Cerimovic[1], F. Kohl[1], R. Beigelbeck[1], F. Keplinger[2], and J. Schalko[1,2]
[1]Research Unit for Integrated Sensor Systems, Austrian Academy of Sciences, Wr. Neustadt, Austria
[2]Institute of Sensor and Actuator Systems, Vienna University of Technology, Vienna, Austria

In this work, we present simulations of a novel micromachined calorimetric flow sensor using COMSOL Multiphysics. The sensor is based on four germanium thermistors that serve as heat sources and as temperature sensors simultaneously. In operational mode, the heated membrane is cooled by any passing flow and the local cooling rate depends on the flow velocity. The simulation results demonstrate ...

Simulation of Laser-Material Interactions for Dynamic Transmission Electron Microscopy Experiments

B.W. Reed[1], T.B. LaGrange[1], G.H. Campbell[1], and N.D. Browning[1,2]
[1]Lawrence Livermore National Laboratory, Livermore, CA, USA
[2]University of California Davis, Davis, CA, USA

The Dynamic Transmission Electron Microscope (DTEM) at Lawrence Livermore National Laboratory is a unique instrument able to capture images of fast-evolving microstructure with exposure times of only 15 ns. This is more than six orders of magnitude faster than conventional in situ electron microscopy and has enabled new insights into phase transformations, chemical reactions, and materials ...

Quick Search