Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

RFID-Enabled Temperature Sensor

I.M. Abdel-Motaleb[1], K. Allen [1]
[1]Department of Electrical Engineering, Northern Illinois University, DeKalb, IL, USA

The design of a RFID-enabled temperature sensor is described in this paper. In this sensor, a change in temperature causes structural beams to bend, which results in a proportional displacement of the plates of the capacitor. Plates\' displacement results, in turn, in changing the value of its capacitance. The capacitor of the sensor is coupled to the LC resonant network of a passive RFID tag. ...

COMSOL® Implementation of a Viscoelastic Model with Cure-Temperature-Time Superposition for Predicting Cure Stresses and Springback in a Thermoset Resistant

B. Patham[1]
[1] General Motors Global Research and Development, India Science Lab, GM Technical Centre India.

Multi-physics simulations of the evolution of cure induced stresses in a viscoelastic thermoset polymeric resin are presented. The viscoelastic material model is implemented with a relaxation spectrum with 34 relaxation time constants. The trends in viscoelastic stresses at different degrees of cure and temperatures are compared and contrasted with an equivalent cure–dependent (but ...

A Numerical Investigation on Active Chilled Beams for Indoor Air Conditioning

G. Cammarata, and G. Petrone
Department of Industrial and Mechanical Engineering, University of Catania, Catania, Italy

In this study fluid-dynamical and thermal performance of active chilled beams is investigated by 2D and 3D modelling in COMSOL Multiphysics. Three different typologies of those air conditioning systems are considered. Results, obtained for typical range of variation of operational conditions, are principally produced as temperature and velocity distributions. Special attention is paid to the ...

Heat and Mass Transfer in Partially Frozen Food Material

B. Watzke[1], H. Deyber[1], and H. Limbach[2]
[1]Nestlé Research Centre, Lausanne, Switzerland
[2]Research Centre, Lausanne, Switzerland

The freezing curve of the food material was extracted from Differential Scanning Calorimetry experiments. A heat conductive model was generated in COMSOL, including the thermo-physical characteristics and the phase transition behavior. The resulting temperature-time evolutions at different positions in space were in excellent agreement with our experimental data. Changing scale, the variation ...

Coupling Stochastic Boundary Perturbations with Fiber Drawing Heat Transfer

A. Emery[1]
[1]University of Washington, Seattle, WA, USA

The production of polymer fibers is done by drawing raw material (preform) in a vertical cylindrical furnace whose heated walls radiantly heat the preform. The wall temperatures are very high and the dominant heat transfer to the fiber is by radiation with little effect from the convective flow of gas in the furnace. In contrast, for polymer fibers the convection contribution is large, and ...

Numerical Simulation of Evaporation Processes in Electron Beam Welding - new

E. Salomatova[1], D. Trushnikov[1], V. Belenkiy[1], V. Tsaplin[1]
[1]Perm National Research Polytechnic University, Perm, Russia

In this paper describes an original method for indirect measurement of the vapor pressure and temperature in the keyhole in electron beam welding. This method is based on the determination of the concentration of chemical elements in the vapor above the welding zone. Taking into account these data model is built 2D diffusion processes with heat and mass transfer elements in the melt, which ...

Inverse Method for Calculating the Temperature-Dependent Thermal Conductivity of Nuclear Materials - new

T. Pavlov[1,2], P. Van Uffelen[1], L. Vlahovic[1], D. Staicu[1], M. Wenman[2], R. W. Grimes[2], ,
[1]Institute for Transuranium Elements, Eggenstein-Leopoldshafen, Germany
[2]Department of Materials, Imperial College London, London, UK

The high temperature measurement of thermal conductivity is vital for predicting nuclear fuel performance both during reactor operation and accident conditions. The proposed method uses experimental thermograms obtained via high temperature laser-flash heating of a disc-shaped sample in combination with finite element analysis and parameter optimization to calculate the thermal conductivity of ...

Thermo-mechanical Analysis of Steam Generator Bottom Tube Sheet of Steam Generator Test Facility

S. P. Ruhela[1], V. Vinod[1], S. Kishore[1], B. K. Sreedhar[1], I. B. Noushad[1], B. Krishnakumar[1], P. Kalyanasundaram[1], and G. Vaidyanathan[1]
[1] Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India

  Steam Generator Test Facility (SGTF) is set up in IGCAR to optimize the design of Steam Generators (SG) for Fast Breeder Reactors. In the SG of SGTF heat exchange takes place from sodium which enters at 525 ºC and leaves at 355 ºC temperature to the water/steam which enters at 235 ºC and leaves at 493 ºC. To reduce the steady state differential temperature and thermal shock during ...

Modeling and Analysis of a Direct Expansion Geothermal Heat Pump (DX): Part I-Modeling of Ground Heat Exchanger

C. Rousseau[1], J. Fannou[1], L. Lamarche[1], M. Ouzzane[2]
[1]École de Technologie Supérieure, Montréal, Québec, Canada
[2]CanmetENERGY, Varennes, Québec, Canada

Geothermal heat pump technology is actually one of the most interesting processes to provide heat and cold to a building. In this study, a model of the ground exchanger of a direct expansion geothermal heat pump (DX) is going to be presented in 1 dimension. The model represents the phase change of the refrigerant, here Chlorodifluoromethane R22, with governing continuity, momentum and energy ...

Fluid-Thermal Analysis of an Inverter with Air Cooling

R. V. Arimilli[1], A. H. Nejad[1], K. Ekici[1]
[1]The University of Tennessee, Knoxville, TN, USA

A new simple air-cooled inverter design is numerically investigated using COMSOL Multiphysics® software. The thermal-fluid analysis is based on a three-dimensional conjugate heat transfer model in which the flow field is assumed to be laminar. A rigorous mesh convergence was performed to ensure that the overall energy balance error is within engineering accuracy while the computational cost is ...