Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modelling of a Wool Hydrolysis Reactor - new

M. Giansetti[1], A. Pezzin[1], S. Sicardi[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

The Life+ GreenWoolF project is aimed at demonstrating that green hydrolysis with superheated water is an effective way to convert wool wastes into organic nitrogen fertilizers. The core of the process is represented by the reaction tank (Figure 1) in which the hydrolyses reaction takes place. The temperature of the material during the reaction is one of the most influencing parameter and has to ...

Interpretation of Measurements with Novel Thermal Conductivity Sensors Suitable for Space Applications

N. I. Kömle[1], G. Kargl[1], E. Kaufmann[2], J. Knollenberg[2], and W. Macher[1]
[1]Space Research Institute, Austrian Academy of Sciences, Graz, Austria
[2]DLR Institut für Planetenforschung, Berlin, Germany

Thermal conductivity of near surface soil layers is a key parameter for understanding the energy balance of planetary bodies. To measure this property, heated needle sensors are frequently used in field and laboratory applications. To adapt this type of sensors for application on space missions, various modifications have to be implemented. An example for such a modified sensor is the ...

Effects of the Film Thickness on the Transient Conjugate Opticalthermal Fields in Thin Films Irradiated by Moving Sources in Back and Front Treatments

N. Bianco[1], O. Manca[2], S.Nardini[2], and D. Ricci[2]

[1]DETEC, Università degli Studi di Napoli Federico II, Napoli, Italy
[2]DIAM, Seconda Università degli Studi di Napoli, Aversa, CE, Italy

A two dimensional transient analysis of the conjugate optical-thermal fields induced in a multilayer thin film structure by a moving Gaussian laser source is carried out numerically in order to compare back and front laser treatment processes. Thermal and optical nonlinearity is induced during transient heating, since the response of weakly absorbing thin films depends on temperature. The heat ...

The use of COMSOL for Building Constructions Engineering Regarding Heat and Moisture Transport

H. Schellen, A. van Schijndel, and P. Briggen
Eindhoven University of Technology, Eindhoven, Netherlands

Hunting Lodge St. Hubertus is one of the most prominent Dutch buildings from the early twentieth century. An extensive study of wind and wind-driven rain (WDR) was conducted to provide insight into the moisture load of the building facade, using measurements and CFD simulations. COMSOL Multiphysics was also used for modeling the moisture transport through the walls of the tower. The model ...

Formation of Porosities During Spot Laser Welding of Tantalum

C. Touvrey[1], and P. Namy[2]
[1]CEA Valduc, France
[2]SIMTEC, France

The aim of the study is to predict the formation of porosities in the case of spot laser welding of tantalum. During the interaction, a deep and narrow cavity, called the keyhole, is generated. At the end of the interaction, surface tension provokes the collapse of the keyhole. Gas bubble can then be trapped into the melting pool, and give birth to residual porosities, according to the ...

Comparison of 2D Conduction Models for Vertical Ground Coupled Heat Exchangers

A. Priarone[1], and S. Lazzari[2]
[1]DIPTEM-TEC, Università di Genova, Genova, Italia; Corresponding Author: a.priarone@unige.it
[2]DIENCA, Università di Bologna, Bologna, Italia

The effect of the infinite length approximation on evaluating the temperature of the surface of Borehole Heat Exchangers is determined by means of COMSOL Multiphysics. In detail, two 2D models of a BHE are compared: in the first model, the domain is represented by a cross-section of the geometry, while in the second model, it is represented by an axial-section of the geometry and, thus, the BHE ...

Elastoplastic Modeling and Experimental Verification of Solder-Substrate Interaction - new

C. Karl[1], C. Slater[1], M. Strangwood[1], K. Tank[2], S. O'Connor[2]
[1]University of Birmingham, Birmingham, UK
[2]Strip Tinning Ltd, Birmingham, UK

Solders are typically used to join similar or dissimilar metals, referred to as substrates. In some cases solders are also used to join completely different classes of materials. For example, a joint between copper busbar and silicon solar cell represents a set of dissimilar substrates. In the formation of a solder-substrate couple, the system must have been subjected to at least a single ...

Modeling of Temperature Fluctuations in Frozen Fish

S. Kumar[1], and S. Panigrahi[1]
[1] Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India

 The novel concept of distributing the food super chilled (partially frozen) in order to prolong the shelf life has been suggested in the project. The temperature of the distribution chain is envisaged to be +5C. The suggested application has the following advantages: 1) Partial thawing of the product in the distribution chain makes it easier to handle. 2) The unhealthy and labour-demanding ...

Loading Conditions in the Feed Sparger of a Steam Drum Influenced by Thermal Shock

P. Goyal, A. Dutta, R.K. Singh, and K.K. Vaze
Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Steam drum in a nuclear power plant is one of the important components of Primary Heat Transport (PHT) system where steam is separated from the steam water mixture. Steam water mixture emanating from the reactor core is separated in a steam drum. Separated steam goes to the turbine whereas separated water after mixing with incoming feed water returns to the reactor. The entire feed water flow is ...

Microwave Heating at the Grain Level

S. Lefeuvre[1], and O. Gomonova[2]
[1]Eurl Creawave, Toulouse, France
[2]Siberian State Aerospace University, Krasnoyarsk, Russia

The microwave heating and processing of heterogeneous material is usually simulated using a set of coupled PDE equations in an homogeneous medium. Nowadays it is possible to describe more accurately the process with a suitable description of the heterogeneities that is at the grain level. Many authors work with spheres (circles) to represent the grains but it is difficult to achieve an ...

Quick Search