Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Heat Drain Device on Ultrasound Imaging Probe - new

G. Vigna[1], L. Spicci[1]
[1]Esaote SPA, Florence, Italy

Self-heating is a problem to consider for Ultrasound Imaging probes. Since the probe is in contact with the skin, it’s necessary to find a solution to lower the front face temperature in order to avoid patient discomfort, even at the most demanding operating condition. One solution consists in the design of a device that drains the heat from the front to the rear of the transducer, where a ...

Modeling of Temperature Fluctuations in Frozen Fish

S. Kumar[1], and S. Panigrahi[1]
[1] Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India

 The novel concept of distributing the food super chilled (partially frozen) in order to prolong the shelf life has been suggested in the project. The temperature of the distribution chain is envisaged to be +5C. The suggested application has the following advantages: 1) Partial thawing of the product in the distribution chain makes it easier to handle. 2) The unhealthy and labour-demanding ...

Microwave Heating at the Grain Level

S. Lefeuvre[1], and O. Gomonova[2]
[1]Eurl Creawave, Toulouse, France
[2]Siberian State Aerospace University, Krasnoyarsk, Russia

The microwave heating and processing of heterogeneous material is usually simulated using a set of coupled PDE equations in an homogeneous medium. Nowadays it is possible to describe more accurately the process with a suitable description of the heterogeneities that is at the grain level. Many authors work with spheres (circles) to represent the grains but it is difficult to achieve an ...

Thermal Modelling of a Solar Water Collector Highly Building Integrated

F. Motte, and C. Cristofari
University of Corsica
Laboratory of Vignola
Ajaccio
Corsica, France

A new concept of solar water collector, highly building integrated has been developed and patented. This collector is hidden into a drainpipe and is totally invisible from the ground level. The drainpipe keeps its water evacuation function. Each installation is composed of several modules serial connected. An experimental wall has been build to test the thermal performances of the instalation ...

Numerical Analysis of Heating and Ablating Non-Pyrolitic Materials

A. Davidy
IMI
Ramat-Hasharon
Israel

In this paper a two dimensional time dependent model is developed and assessed to describe the interrelated processes of conduction, convective heating and ablation of non pyrolytic ablative material. An aerothermochemical analysis for the process of non-pyrolitic composite material regression in advanced solid-propellant rocket motors has been conducted. The analytical approach is similar ...

3D Stationary and Temporal Electro-Thermal Simulations of Metal Oxide Gas Sensor Based on a High Temperature and Low Power Consumption Micro-Heater Structure

N. Dufour[1], C. Wartelle[2], P. Menini[1]
[1]LAAS-CNRS, Toulouse, France
[2]Renault, Guyancourt, France

The aim of this work was to simulate the electro-thermal behavior of a micro-hotplate used as a gas sensor, in order to compare the obtained results with a real structure. The structure has been designed in 3D and a stationary and a temporal study has been realized.

Thermal and Fluid Dynamics Studies Applied to Steel Industry

G. Tracanelli[1], M. Culos[1]
[1]Studio di Ingegneria Industriale Tracanelli, San Vito al Tagliamento, Italy

The energy pay back is one of the most interesting field especially in the steel industry where this contribution is strictly connected to steams and emissions inside and outside the plant. Perhaps, this application is sometimes disturbed by a strong variation of emissions (\"off gas\"). One example is the arc furnace where the process is very discontinuous and there are many fluctuations in the ...

3-Dimensional Blood Cooling Model inside a Carotid Bifurcation

R. Sikorski[1], T. Merrill[1]
[1]Rowan University, Glassboro, NJ, USA

Stroke is caused by an interruption of brain blood supply and is one of the leading causes of death and disability. A mild reduction of 2-5°C in tissue temperature through hypothermia has shown reduced tissue infarct size, increased tissue recovery, and positive neurological effects. This paper seeks to predict the outlet blood temperature in the common carotid bifurcation branches. In our ...

Fluid-Thermal Analysis of an Inverter with Air Cooling

R. V. Arimilli[1], A. H. Nejad[1], K. Ekici[1]
[1]The University of Tennessee, Knoxville, TN, USA

A new simple air-cooled inverter design is numerically investigated using COMSOL Multiphysics® software. The thermal-fluid analysis is based on a three-dimensional conjugate heat transfer model in which the flow field is assumed to be laminar. A rigorous mesh convergence was performed to ensure that the overall energy balance error is within engineering accuracy while the computational cost is ...

Study of the Thermal Behavior of Solar Cells Based on GaAs

N. Martaj[1,2], E. Guidicelli[2], Y. Cuminal[2], A. Perona[3], S. Pincemin[1,2]
[1]EPF-Ecole d’Ingénieurs, Montpellier, France
[2]IES, UMR5214, Université Montpellier II, Montpellier, France
[3]Laboratoire PROMES-CNRS Tecnosud, Rambla de la thermodynamique, Perpignan, France

The paper studies the thermal modeling and simulation of photovoltaic cells suitable for use in highly concentrated solar flux (> 1000 suns). The cells studied are those of GaAs kind. These cells are a very good alternative to be studied instead of more complex multi junctions cells. The objective is to find a simple and inexpensive way to remove heat from PV modules and to keep the electrical ...