Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design and Prototyping of a Passive Cold Chain Vaccine Storage Device for Long Hold Times

D. Gasperino [1], O. Yildirim[1]
[1]Intellectual Ventures, Bellevue, WA, USA

In 2010 an estimated 109 million infants were immunized against DTP, which serves as a good proxy for vaccinations in general. At the same time, however, approximately 19.3 million infants worldwide were not reached by routine DTP immunization services. Immunization rates tend to be lowest in areas where poor infrastructure and limited access to electricity can cause vaccine stock-outs and high ...

Exergy Analysis of a Water Heat Storage Tank

F. Dammel[1], J. Winterling[1], K. J. Langeheinecke[2], P. Stephan[3]
[1]Institute of Technical Thermodynamics, Technische Universität Darmstadt, Germany
[2]IAV, Gifhorn, Germany
[3]Institute of Technical Thermodynamics/Center of Smart Interfaces, Technische Universität, Darmstadt, Germany

A combined heat and power (CHP) plant generates both electricity and useful heat. A heat storage tank enables a decoupling of electricity and heat delivery. In this study a cylindrical hot water storage tank is considered. Charging, holding time and discharging are numerically simulated applying COMSOL Multiphysics 4.2. The performance of the heat storage is evaluated by an exergy analysis. ...

Loading Conditions in the Feed Sparger of a Steam Drum Influenced by Thermal Shock

P. Goyal, A. Dutta, R.K. Singh, and K.K. Vaze
Bhabha Atomic Research Centre, Mumbai, Maharashtra, India

Steam drum in a nuclear power plant is one of the important components of Primary Heat Transport (PHT) system where steam is separated from the steam water mixture. Steam water mixture emanating from the reactor core is separated in a steam drum. Separated steam goes to the turbine whereas separated water after mixing with incoming feed water returns to the reactor. The entire feed water flow is ...

Influence of COMSOL on the Design and Testing of the High Flux Isotope Reactor HB-4 Cold Source: Validation of the Simulation

J. D. Freels
Oak Ridge National Laboratory

This presentation concerns our numerical and experimental research on the High Flux Isotope Reactor HFIR, located at the Oak Ridge National Laboratory. In this presentation we give a Brief Pictorial Introduction to the HFIR, som physical properties of Supercritical Hydrogen, and Simulations of both natural and forced convection problems using COMSOL Multiphysics. This presentation also ...

Microwave Drying of Cellular Ceramic Substrates: A Conjugate Modeling Approach to Understand Surface Moisture Migration

A. Halder, and J. George
Corning, Inc.
Painted Post, NY

Microwave drying processes are critical components in the manufacture of cellular ceramic substrates and filters. The objective of this study is to develop a comprehensive model at a small scale and include all the possible physics that are important during microwave drying processes. Based on the results, conclusions are made on the importance of different factors in drying.

Deriving Correction Factors for a Primary Standard for Radiation Dosimetry

R. Tosh, and H. Chen-Mayer
NIST
Gaithersburg, MD

Accurate metrology of radiotherapeutic absorbed dose to water requires assessing the radiation induced temperature change. The most direct method for doing this is water calorimetry, for which the established technique involves the use of slender thermistor probes that are sealed within a glass vessel containing high-purity water. The probes and vessel perturb the radiation field, via ...

Thermal and Fluid Dynamics Studies Applied to Steel Industry

G. Tracanelli[1], M. Culos[1]
[1]Studio di Ingegneria Industriale Tracanelli, San Vito al Tagliamento, Italy

The energy pay back is one of the most interesting field especially in the steel industry where this contribution is strictly connected to steams and emissions inside and outside the plant. Perhaps, this application is sometimes disturbed by a strong variation of emissions (\"off gas\"). One example is the arc furnace where the process is very discontinuous and there are many fluctuations in the ...

Numerical Evaluation of Long-Term Performance of Borehole Heat Exchanger Fields

A. Priarone[1], S. Lazzari[1], and E. Zanchini[1]

[1]Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Alma Mater Studiorum - Università di Bologna, Bologna, Italy

The long-term performance of double U-tube Borehole Heat Exchangers (BHEs) is studied numerically by considering three different time-dependent heat fluxes exchanged between each BHE and the ground. Since the temperature distribution along the vertical direction has a negligible influence on long-term BHE performance, the problem is studied by means of a 2D conduction model, where the energy ...

Numerical Simulation for Dimensioning a Rock Heating Experiment

P. Ralek, and M. Hokr
Technical University of Liberec
Liberec, Czech Republic

The paper deals with simulation of rock heating experiment in underground, testing the rock properties for geothermal application. The modeled process is unsteady heat conduction in 3D. We made several parametric studies to find the possible temperature range with uncertainty in some of the parameters - in particular an interval around the laboratory measured heat conductivity and capacity and ...

Thermo-mechanical Analysis of Steam Generator Bottom Tube Sheet of Steam Generator Test Facility

S. P. Ruhela[1], V. Vinod[1], S. Kishore[1], B. K. Sreedhar[1], I. B. Noushad[1], B. Krishnakumar[1], P. Kalyanasundaram[1], and G. Vaidyanathan[1]
[1] Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India

  Steam Generator Test Facility (SGTF) is set up in IGCAR to optimize the design of Steam Generators (SG) for Fast Breeder Reactors. In the SG of SGTF heat exchange takes place from sodium which enters at 525 ºC and leaves at 355 ºC temperature to the water/steam which enters at 235 ºC and leaves at 493 ºC. To reduce the steady state differential temperature and thermal shock during ...

Quick Search