Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Inverse Method for Calculating the Temperature-Dependent Thermal Conductivity of Nuclear Materials

T. Pavlov[1,2], P. Van Uffelen[1], L. Vlahovic[1], D. Staicu[1], M. Wenman[2], R. W. Grimes[2], ,
[1]Institute for Transuranium Elements, Eggenstein-Leopoldshafen, Germany
[2]Department of Materials, Imperial College London, London, UK

The high temperature measurement of thermal conductivity is vital for predicting nuclear fuel performance both during reactor operation and accident conditions. The proposed method uses experimental thermograms obtained via high temperature laser-flash heating of a disc-shaped sample in combination with finite element analysis and parameter optimization to calculate the thermal conductivity of ...

Simulation of Heat-induced Fusing of Polymer Toner

Hoffmann, R.
Océ Printing Systems GmbH, Poing

The electrophotographic print process uses polymer toner particles to create the desired print image on the paper. After depositing the particles on the paper, the particle layer has to be heated beyond the glass point of the polymer to create a homogeneous layer. This fusing process is one of the most energy-consuming parts of the whole print process. It is therefore imperative to limit the ...

Modelling of Heat Transfers on a Steel Plate. First Approach in Presence of Intumescent Coating

Jimenez, M., Duquesne, S., Bourbigot, S.
Laboratoire des Procédés d’Elaboration de Revêtements Fonctionnels (UPRES EA 1040), Ecole Nationale Supérieure de Chimie de Lille, Villeneuve d’Ascq Cedex, France

The aim of this work is to optimize the efficiency of an intumescent coating that is designed to protect steel in a hydrocarbon fire. This kind of coating, applied on steel plate, is usually evaluated in big industrial furnaces and exposed to hydrocarbon fire conditions. FEMLAB has been first used to model heat transfers in the virgin steel plate: a three dimensional model has been created using ...

Effects of the Film Thickness on the Transient Conjugate Opticalthermal Fields in Thin Films Irradiated by Moving Sources in Back and Front Treatments

N. Bianco[1], O. Manca[2], S.Nardini[2], and D. Ricci[2]

[1]DETEC, Università degli Studi di Napoli Federico II, Napoli, Italy
[2]DIAM, Seconda Università degli Studi di Napoli, Aversa, CE, Italy

A two dimensional transient analysis of the conjugate optical-thermal fields induced in a multilayer thin film structure by a moving Gaussian laser source is carried out numerically in order to compare back and front laser treatment processes. Thermal and optical nonlinearity is induced during transient heating, since the response of weakly absorbing thin films depends on temperature. The heat ...

A Two Dimensional Numerical Model for Multilayer Thin Films Irradiated by a Moving Laser

N. Bianco, O. Manca, and D. Ricci
Università degli Studi di Napoli

A numerical analysis of the conjugate optical-thermal fields in an amorphous silicon thin film deposited on a glass substrate and irradiated by a moving Gaussian laser source is carried out. The combined optical and thermal models are solved by means of COMSOL Multiphysics. Results are given for continuous and pulsed moving Gaussian heat sources and they are presented as temperature ...

Design of heat flux microsensor assisted by COMSOL for the study of energy transfer on Si and Cu thin samples

L. Bedra, N. Semmar, A.-L. Thomann, R. Dussart, J. Mathias, and Y. Tessier
GREMI, CNRS-Université d'Orléans, Orléans, France

A commercial heat probe is used for energy transfer measurements on copper and silicon substrates. To do so, the micro sensor has to be calibrated under high vacuum (~10-7 mbar), using a homemade black body as a heat source.Although the HFM is cooled at 5 oC, the solid surface temperature is unknown as the thermal contact resistance. Thus, COMSOL simulations are also used to obtain reliable ...

Heat and Mass Transfer in Multilayer Fabrics

S. Quiniou1, F. Lesage1, V. Ventenat2, and M. A. Latifi1
1Laboratoire des Sciences du Génie Chimique, Nancy, France
2Centre de Recherche Decathlon, Villeneuve d'Ascq, France

In this paper, an investigation of heat and mass transfer in two-layer fabrics, used in the manufacture of comfortable sportswear, is presented. It is based on a model described by partial differential equations representing the mass balance of water vapor, free and adsorbed water and the heat balance in the fabric. The model involves several unknown physical and transfer parameters. A specific ...

Temperature Distribution Study of Composite Germanium Detector

M. Wolf1, J. Kojouharova2, I. Kojouharov2, T. Engert2, J. Gerl2, J. Groß1, and H.-J. Wollersheim2
1Hochschule Darmstadt, University of Applied Sciences, Darmstadt, Germany
2Gesellschaft für Schwerionenforschung GmbH, Darmstadt, Germany

Temperature distributions of cooled Germanium (Ge) detectors are calculated by the COMSOL Multiphysics software in order to determine the necessary cooling power of an electromechanical cooling engine. For a single Ge-crystal, heat losses of 2.5 W are determined, which increase to 5.7 W for a composite detector with three Ge-crystals.The energy transfer may be reduced substantially by a heat ...

Study of a Silicon Photodetector Thermal Stabilization using a Peltier Cell

E. Foschi1, C. Guandalini2, G. Levi1, L. Quadrani1, C. Sbarra 1,3, and M. Zuffa2
1Department of Physics, University and INFN, Bologna, Italy
2INFN, Bologna, Italy
3Centro Studi e Ricerche E.Fermi, Roma, Italy

In recent years, a new type of silicon photon detection devices (SiPM) has been developed. These devices have advantages in comparison to normal photomultiplier tubes (PMT), but being made by an array of avalanche photo diodes operated in Geiger mode, they are much more sensitive to temperature changes than standard PMTs. Typical SiPM gains vary from 3 to 5 percent per degree Centigrade. In space ...

Modeling System Dynamics in a MEMS-Based Stirling Cooler

D. Guo, A. McGaughey, G. Fedder, M. Lee, and S. Yao
Carnegie Mellon University
Pittsburgh, PA

Micro-scale devices based on the Stirling cycle are an attractive choice for chip- and board-level electronics. A new Stirling cycle micro-refrigeration system composed of arrays of silicon MEMS cooling elements has been designed. COMSOL is used to evaluate the thermal performance of the system. Simulation of compressible flow and heat transfer with a large deformed mesh has been successfully ...

Quick Search