Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Flow Analysis and Optimization of a Hierarchical Plate Heat Exchanger for an Adsorption Heat Pump

E. Tempfli[1], F.P. Schmidt[1]
[1]Karlsruhe Institute of Technology (KIT), Fluid Machinery (FSM), Karlsruhe, Germany

The paper investigates the hydrodynamic performance of a hierarchical parallel channel network for the objective of optimal thermal coupling to heat released in the adsorption processes, as in adsorption heat pumps. More specifically, the uniformity of the fluid flow over the network is improved by optimizing the topology of the manifold channels of the two hierarchical levels. For this purpose a ...

Heat Transfer Modelling of Single High Temperature Polymer Electrolyte Fuel Cell (HT PEFC) Using COMSOL Multiphysics®

V. Venkataraman[1]
[1]Centre for Hydrogen & Fuel Cell Research, University of Birmingham, United Kingdom

In this paper a 3D geometry of a single HT PEFC with all the components (membrane, cathode, anode & bipolar plate with flow field) was modelled for heat transfer. The source of heat within the fuel cell is the internal heat generated from electrochemical reactions. Heat source terms used in the model are: Joule Heat - Occurs in membrane and modelled as Volumetric heat source Irreversible ...

Several Benchmarks for Heat Transfer Problems in COMSOL Multiphysics®

S. Titarenko[1]
[1]University of Leeds, Leeds, United Kingdom

Nowadays all branches in modern science and industry tend to solve ever complicating problems. As the result the computational time increases considerably and it become very important to reduce the processing time and use available resources more efficiently. Parallelizing problem proves itself as efficient way to overcome the described problem. In the poster we compare different methods of ...

Air Flow Effect on the Temperature of a Building Integrated PV-Panel

G. Florides[1], S.A. Kalogirou[1], L. Aresti[1], R. Agathocleous[1], P. Christodoulides[1]
[1]Faculty of Engineering and Technology, Cyprus University of Technology, Limassol, Cyprus

This study examines the effect of air flow between the building integrated PV-panel and the wall. To formulate the heat exchange process for the air flowing between the PV panel and the wall, time-dependent, heat transfer partial differential equations (PDEs) are solved with COMSOL Multiphysics®. It is shown that in summer, the maximum temperature of a PV panel is observed on an east facing ...

Modelling of a 5 Cell Intermediate Temperature Polymer Electrolyte Fuel Cell (IT-PEFC) Stack: Analysis of Flow Configuration and Heat Transfer

A.S. Chandan[1], A. Mossadegh Pour[2], R. Steinberger-Wilckens[2]
[1]Centre for Hydrogen and Fuel Cell Research, University of Birmingham, Birmingham, United Kingdom
[2]University of Birmingham, Birmingham, United Kingdom

Polymer Electrolyte Fuel Cells (PEFCs) are a key technology in the advancement of society towards a low carbon future, in particular for use within the automotive sector. PEFCs are advantageous due to their low operating temperature (60-80 deg.C), quick start up times and responsiveness to load change. However, the requirement for expensive platinum, difficulty of water management and heat ...

Smart Radiator Upgrade (Super Smart with Natural Gas)

E. Bozelie[1], P. Bruins[1]
[1]Saxion University Enschede, Enschede, The Netherlands

In heating upgrades, most attention is paid to the boiler. When upgrading to HR++-boilers (eff of 107%) however, difficulties may occur since the high efficiency boilers are designed for water temperatures around 40°C, while the old radiators are designed for water temperatures higher than 60°C. The resulting mismatch may lead to reduced performance, a larger carbon footprint and increased ...

Multiphysics Modeling and Analysis of DBS Electrodes: Application to Parkinson’s Disease

M.Vidya[1], M. SharatDivya[1], N.Priyadarshini[1], E.R Rajkumar[1]
[1]Division of Biomedical Engineering, Center for Biomedical Engineering Research, School Of Biosciences and Technology, VIT University Vellore, India.

Deep Brain Stimulation (DBS) is a surgical technique that involves surgically implanting Platinum electrode to create an electric field to activate the targeted nerve cells and fibers with minimized side effects. Important stimulation parameters to monitor include temperature, electric field intensity and the current density.This paper gives a Finite Element Model (FEM) for DBS electrode in ...

Integrated Solar Thermal Collector with Heat Storage

A.R. Sánchez-Guitard[1], E. Ruiz-Reina[1]
[1]University of Málaga, Málaga, Spain

In this work, we study the design of a new integrated system for Solar Water Heating that combines the solar thermal energy collection (primary circuit) with the heat storage (secondary circuit) into the same device. We have performed different finite element method simulations using COMSOL Multiphysics®, for solving the equations of heat transfer (conduction and convection) and those of fluid ...

Simulated Rheometry of a Nonlinear Viscoelastic Fluid

A. Czirják[1], Z. Kőkuti[1], G. Tóth-Molnár[1], P. Ailer[2], L. Palkovics[2], G. Szabó[1]
[1]University of Szeged, Szeged, Hungary
[2]Kecskemét College, Kecskemét, Hungary

In certain cases, the accuracy of measurements with a rotational rheometer can be influenced by inefficient thermal management, by the heat generated in the sample, or by rod-climbing due to the Weissenberg effect. We investigate the effect of these phenomena with simulations in COMSOL Multiphysics®. Our model is based on the axial symmetric (2D) formulation of the two-phase flow with the ...

Quick Search

391 - 399 of 399 First | < Previous | Next > | Last