Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Sensitivity Analysis of Different Models of Piezoresistive Micro Pressure Sensors

S. Meenatchisundaram[1], S. M. Kulkarni[2], S. Bhat
[1]Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal, Karnataka, India.
[2]Department of Mechanical Engineering, National Institute of Technology, Surathkal, Karnataka, India.

Piezoresistive pressure sensors have received much attention over the years because of low cost, simple measurement techniques, etc. There is a challenge in design with respect to appropriate positioning, shape and temperature compensation. Different models of piezoresistive pressure sensors are proposed to enhance its sensitivity in terms of output voltage. This paper aims in sensitivity ...

CVD Graphene Growth Mechanism on Nickel Thin Films

K. Al-Shurman[1], H. Naseem[2]
[1]The Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Electrical Engineering, University of Arkansas, Fayetteville, AR, USA

Chemical vapor deposition is considered a promising method for synthesis of graphene films on different types of substrate utilizing transition metals such as Ni. However, synthesizing a single-layer graphene and controlling the quality of the graphene CVD film on Ni are very challenging due to the multiplicity of the CVD growth conditions. COMSOL Multiphysics® software is used to investigate ...

Study of Effect on Resonance Frequency of Piezoelectric Unimorph Cantilever for Energy Harvesting

G. R. Prakash[1], K. M. V. Swamy[1], S. Huddar[1], B. G. Sheeparamatti[1], Kirankumar B. B.[1]
[1]Basaveshwar Engineering College, Bagalkot, Karnataka, India

The focus of this paper is to study the effect on resonance frequency and power enhancement techniques[1] of piezoelectric MEMS and modeling, design, and optimization of a piezoelectric generator based on a two-layer bending element(Figure 1) using COMSOL Multiphysics. An analytical relation was developed based on the shift in resonance frequency(Figure 2) caused by the addition of a thin film ...

Design and Analysis of MEMS Gyroscope

L. Sujatha[1], B. Preethi[1]
[1]Rajalakshmi Engineering College, Chennai, India

MEMS gyroscope technology provides cost- effective method for improving directional estimation and overall accuracy in the navigation systems. This paper presents a tuning- fork gyroscope (TFG) [1] with a perforated proof mass. The perforated proof mass used in the design enables the reduction of the damping effect. This MEMS based gyroscope was designed using COMSOL Multiphysics 4.2a. This ...

Tunable MEMS Capacitor for RF Applications

H. S. Shriram[1], T. Nimje[1], D. Vakharia[1]
[1]BITS Pilani, Rajasthan, India

Radio Frequency MEMS devices have emerged to overcome the problem of high losses associated with semiconductors at high frequencies. A tunable MEMS capacitor is a micrometre-scale electronic device whose capacitance is controlled through different actuation mechanisms which govern the moving parts. It can have electrostatic or electrothermal actuators depending on the functional complexity and ...

Modeling and Analysis of Thermal Bimorph using COMSOL Multiphysics®

Rachita Shettar[1], Dr. B G. Sheparamatti[1]
[1]Basaveshwar Engineering College, Bagalkot, Karanataka, India

In this paper modeling and simulation results of a thermal bimorph is capable of producing increased displacement for increasing temperatures are presented. Thermal bimorphs are popular actuation technology in MEMS (Micro-Electro-Mechanical Systems). Bimorph actuators consist of two materials with different coefficients of thermal expansion. The main objective of this work is to investigate the ...

Design of MEMS Based High Sensitivity and Fast Response Capacitive Humidity Sensor

R. Karthick, S. P. K. Babu, A. R. Abirami, and S. Kalainila
Periyar Maniammai University
Periyar Nagar
Vallam, Thanjavur
Tamilnadu, India

This paper presents the design and simulation of high sensitivity and fast response capacitive humidity sensor. Generally, the capacitive humidity sensor is made up of parallel electrode, the upper electrode being a grid with various line width and line spacing. A model is simulated using COMSOL Multiphysics. High sensitivity and fast response of the model is optimized by varying the ...

Surface Plasmon Resonance

J. Crompton[1], S. Yushanov[1], L.T. Gritter[1], K.C. Koppenhoefer[1]
[1]AltaSim Technologies, Columbus, OH, USA

The resonance conditions for surface plasmons are influenced by the type and amount of material on a surface. Full insight into surface plasmon resonance requires quantum mechanics considerations. However, it can be also described in terms of classical electromagnetic theory by considering electromagnetic wave reflection, transmission, and absorption for the multi-layer medium. The two commonly ...

Design of a MEMS Capacitive Comb-drive Accelerometer

T. Kaya[1], B. Shiari[2], K. Petsch[1], and D. Yates[2]
[1]Central Michigan University, School of Engineering and Technology, Mount Pleasant, MI
[2]University of Michigan, Dept. of Electrical Engineering and Computer Science, Ann Arbor, MI

In this work, a MEMS low-g accelerometer with three sensitive directions is designed for health monitoring applications. The accelerometer may have different sensitivity in different axes. The proof-mass of the device is suspended by four serpentine springs, and the comb drive structure is used to form the differential capacitor to measure the displacement of the proof-mass. The structure has an ...

Using COMSOL Multiphysics Capability for Engineering High Q MEMS Resonators

Amy Duwel
Charles Stark Draper Laboratory
Cambridge, USA

Micromechanical resonators are used in a wide variety of applications, including inertial sensing, chemical and biological sensing, acoustic sensing, and microwave transceivers. Despite the distinct design requirements for each of these applications, a ubiquitous resonator performance parameter emerges. This is the resonator’s Quality factor (Q), which describes the mechanical energy damping. ...

Quick Search

1 - 10 of 412 First | < Previous | Next > | Last