Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Optimal Design of Linear Motor Based on the Simulation of COMSOL Multiphysics

X. Chen
PAL University of Science and Technology, China

Linear motor has a lot of applications, such as magnetic levitation train, electromagnetic weapons. It is a very important research significance. We established a three-dimensional model of linear motor to calculate the magnetic field lines and flux density distribution, and got the electromagnetic force too. We compared the results of simulation using COMSOL and experiment under different ...

Effect of Mass Adsorption on a Resonant NEMS

J. J. Ruz Martinez
Instituto de Microelectronica de Madrid
Tres Cantos
Madrid, Spain

The motion of a resonant NEMS has been widely studied for many different applications such as structural mechanics in engineering, ultra sensitive mass spectrometers or the well known Atomic Force Microscope. The study of the eigenfrequencies of such structures is very important, and nowadays there are good theoretical methods to accurately predict such eigenfrequencies. When a little mass is ...

Passive Microsensor Based on LC Resonators for Substance Identification

D.A. Sanz Becerra[1], E.A. Unigarro Calpa[1], J. Osma[1], F. Segura[1]
[1]Universidad de los Andes, Bogotá, Colombia

A scheme for inductive wireless powering and readout of passive LC sensor is presented. The sensor’s inductor is designed as a planar square coil and is used as the power receiving component. The capacitor is connected directly to the inductor and it was designed as an interdigital capacitor. With a transmitting coil (coupling antenna), an electromagnetic field is generated which couples with ...

Modeling of Vibrating Atomic Force Microscope´s Cantilever within Different Frames of Reference

E. Kamau, and F. Voigt
University of Oldenburg, Germany

Cantilever vibration modes were simulated with COMSOL Multiphysics. In the 1st approach the model consisted of an excitation piezo, a holder plate and a chip where the cantilever was mounted on. A sinusoidal voltage signal was applied to the piezo in the simulation, which resulted in movements of the holder plate and finally led to the excitation of the cantilever. In the 2nd approach the model ...

Magnetic Nanoparticles for Novel Granular Spintronic Devices

A. Regtmeier[1], A. Weddemann[2], I. Ennen[3], and A. Hütten[1]
[1]Dept. of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany
[2]Dept. of Elect. Eng. and Comp. Science, Lab. for Electromagnetic and Electronic Syst., MIT, Cambridge, MA
[3]Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria

Superparamagnetic nanoparticles have a wide range of applications in modern electric devices. Recent developments have identi fied them as components for a new type of magnetoresistance sensor. We propose a model for the numeric evaluation of the sensor properties. Based on the solutions of the Landau-Lifshitz-Gilbert equation for a set of homogeneously magnetized spheres arranged in highly ...

Numerical Modeling of a MEMS Sensor with Planar Coil for Magnetic Flux Density Measurements

J. Golebiowski[1], S. Milcarz[1]
[1] Department of Semiconductor and Optoelectronics Devices, Technical University of Lodz, Lodz, Poland

The silicon cantilever with the planar coil was applied to the magnetic flux density measurements. The influence of shape and dimensions of planar coil on magnetic energy density was described. In cause of magnetic anisotropy of analyzed silicon structure FEM method and couple field method was applied in simulation. The Lorentz force based sensors owing to their potentially simpler fabrication ...

Multiphysics System Simulation for MEMS Inertial Sensors

R. Sattler
University of Applied Sciences, Regensburg, Germany

This paper gives an overview of modelling microsensors on geometry and system level. The focus will be on the generation of the multiphysics reduced order system model and the coupling with package and ASIC models. The method is based on modal superposition. This means all the details of the sensor can be considered in a finite element model. The mechanical mode shapes of this model form the ...

Mechanical Model of RF MEMS Capacitor Structures

R. Chatim[1]
[1]University of Kassel, Kassel, Germany

In order to design an RF MEMS based device, it is beneficial to have information concerning mechanical behavior. For model verification purpose, solution offered by simulation software equipped with predefined physics application is one valuable way to provide initial reference. To avoid unwanted particular total strain in RF MEMS structures, a compensation layer can be utilized. When the number ...

Design and Implementation of MEMS based Blood Viscometer for INR Measurement

J. G. Immanuel[1], K. Poojitha[1], B. Viknesshwar[1], A. Gupta[1]
[1]PSG College of Technology, Peelamedu, Coimbatore, Tamil Nadu, India

The paper brings out the designing and implementation of blood viscosity monitoring device that gives us the INR to measure the effectiveness of anti coagulant medications .When a blood vessel is damaged, clotting cascade begins that results in blood clot. This process is affected by several medical conditions where it becomes mandatory for a patient to intake anti-coagulants. Thus to monitor ...

Design and Optimization of an All Optically Driven Phase Correction MEMS Deformable Mirror Device using Finite Element Analysis

V. Mathur[1], K. Anglin[1], V.S. Prasher[1], K. Termkoa[1], S.R. Vangala[1], X. Qian[1], J. Sherwood[1], W.D. Goodhue[1], B. Haji-Saeed[2], and J. Khoury[2]

[1]Photonics Center, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
[2]Air Force Research Laboratory/Sensors Directorate, Hanscom Air Force Base, Massachusetts, USA

Optically addressable MEMS mirrors are required for future high density adaptive optics array systems. We have demonstrated a novel technique of achieving this by actuating low stress Silicon Nitride micro mirrors via cascaded wafer bonded Gallium Arsenide photo detectors on Gallium Phosphide. In the work reported here, we discuss the key design parameters of the device, and present the finite ...

Quick Search