Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of a One-Port SAW Resonator using COMSOL Multiphysics

R. Krishnan, H.B. Nemade, and R. Paily
Indian Institute of Technology, Guwahati

In this paper, we discuss simulation of one-port Surface Acoustic Wave (SAW) resonators using COMSOL Multiphysics. Resonator action can be achieved in one of the two ways; a single Inter-digital Transducer (IDT) having several fingers over a piezoelectric substrate or a short IDT with reflecting gratings at the ends of the IDT. We have modeled a Rayleigh wave type SAW device choosing YZ ...

Actively Controlled Ionic Current Gating In Nanopores

G. Zhang[1], S. Bearden[1]
[1]Clemson University, Clemson, SC, USA

It is necessary to understand and control nanopore behavior in order to develop biosensors for a variety of applications including DNA sequencing. The fluidics of nanopore devices we fabricated exhibits a range of interesting phenomena, such as enhanced conductance and current rectification. By electrically biasing nanopores, we were able to actively control the nanopore conductance in real time ...

Harmonic Simulation of Viscoelastic Polymer Microcantilever for Electrostrictive Energy Harvesters

N. Alcheikh[1], C. Ayela[1], I. Dufour[1]
[1]Univ. Bordeaux, IMS Lab, Pessac, France.

Electrostrictive polymers have been of significant interest over the last years for energy harvesting. Principle is based on the conversion of a mechanical deformation into electricity. The stored energy basically depends on the mechanical strain induced into an electrostrictive polymer by the mechanical resonant vibration of a microcantilever supporting the electrostrictive layer. In this work, ...

Sensitivity Optimization of Microfluidic Capacitance Sensors

S. Satti[1], M. Baghini[1]
[1]Indian Institute of Technology Bombay, Mumbai, Maharashtra, India

As a part of a lab-on-chip-device, more often it is required to measure dielectric constant of the fluid. For this purpose it is necessary to develop a sensor whose size is compatible with microfluidic channel. The work, presented in this paper, studies effect of the parameters influencing sensitivity of such a sensor and ultimately optimizes these dimensions to maximize the sensitivity. We ...

Design and Simulation of a Nano-Wire Based Piezoresistive Pressure Sensor

S. A. Selvin, N. B. Moorthy, G. Anju, and M. Alagappan
PSG College of Technology
Tamil Nadu, India

This paper chalks out the design and performance of a piezo resistive surface micro machined circular diaphragm based pressure sensor. A structural deformation in the piezo resistive nano structure placed above the diaphragm will result in varied current density, which is in direct accordance with the applied pressure. This effect relies on the principle of piezo resistivity and employing a nano ...

Mathematical modeling of nanomaterials

Strauss, D.J., Trenado, C.
Institute of New Materials, Saarbr├╝cken

Mathematical modeling at the Institute of New Materials has played a crucial role in supporting the manufacturing and design of new technologies of nanomaterials, whose applications range from transportation, electronics and optics engineering to environmental sciences. In this paper, we focus our attention to two mathematical models together with their corresponding FEMLAB simulations: The ...

Simulation of ZnO Enhanced SAW Gas Sensor

H. du Plessis[1], W. Perold[1]
[1]University of Stellenbosch, Stellenbosch, South Africa

Surface acoustic wave (SAW) devices are widely used for their sensing capabilities and gas sensing is only one of many uses. There is an ever increasing need to make them as effective as possible by adding nanomaterials to the device. In this study a two-port delay-line structure with 128YX lithium niobate was simulated with COMSOL Multiphysics® in the form of a 2D cross-section. ZnO nanopillars ...

A Study of the Effects of Mounting Supports, and Dissipation on a Piezoelectric Quartz Double-Ended Tuning Fork Gyroscope

G. Choi[1], Y. Yong[1]
[1]Rutgers University, New Brunswick, NJ, USA

A COMSOL model of a piezoelectric quartz double ended tuning fork gyroscope was implemented. The gyroscope has two detection modes; the first mode detects the angular velocity about a z-axis perpendicular to the tuning fork plane (x-y plane), while the second mode detects the angular velocity about a y-axis that is the longitudinal axis along the length of the tuning fork. Eigenfrequency analyses ...

Modeling Drug Release from Materials Based on Electrospun Nanofibers

P. Nakielski[1], T. Kowalczyk[1], T.A. Kowalewski[1]
[1]Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland

Comprehensive studies of drug transport in nanofibres based mats have been performed to predict drug release kinetics. The paper presents our approach to analyze the impact of fibers arrangement, one of the parameters varied in our parallel experimental studies. COMSOL Multiphysics® has been used to assess the impact of the various purposed arrangements of fibers within the mat. Drug release ...

Design and Simulation of MEMS based Thermally Actuated Positioning Systems

D. Mallick[1], P. K. Podder[1], A. Bhattacharyya[1]
[1]Institute of Radio Physics & Electronics, University of Calcutta, Kolkata, India

With continuous advancement in nanotechnology, requirement is rising for high precision motion controlled positioning system. Such system plays crucial role in the fabrication of micro and nano-sized objects and assemblies. They can be used for automated mask aligner, as biological sensors, in optical technology as deformable mirrors. Most significant requirements for the actuators in a ...

Quick Search