Quick Search

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Design, Fabrication and Simulation of Microchannel Network for MEMS

V. Jain[1], A. K. Sharma[2], P. Kumar[2]
[1]Thapar University, Patiala, Punjab, India
[2]Indian Institute of Technology Roorkee, Roorkee, Uttar Pradesh, India

The greatest challenge being faced for realization of Micro-Electro Mechanical System (MEMS) technology is the lack of a simple, quick and reliable method for the fabrication of 3-D microchannel in the range of micrometers. A novel fabrication technique which opens possibilities for the production of these microfluidic channels is presented in this paper. The present paper highlights the ...

High Coupling Factor Piezoelectric Materials for Bending Actuators: Analytical and Finite Elements Modeling Results

I.A. Ivan[1], M. Rakotondrabe[1], and N. Chaillet[1]
[1]FEMTO-ST Institute, University of Franche-Comte, Besançon, France

New giant piezoelectric factor materials such as PMN-PT and PZN-PT were researched during the last decade and are actually becoming commercially available. As they seem very attractive for actuator designs, we studied their potential in replacing PZT ceramics. In a first comparative approach, we tested a series of classic rectangular composite bimorph structures of different combinations of ...

Development and Characterization of High Frequency Bulk Mode Resonators

H. Pakdast, Z. Davis
DTU Nanotech, Technical University of Denmark, Kgs. Lyngby, Denmark

This article describes the development of a bulk mode resonator which can be employed for detection of bio/chemical species in liquids.  The goal is to understand the mechanical and electrical properties of a bulk mode resonator device which exhibit high frequency resonance modes and Q-factor. A high resonance frequency is desirable because a small change in the resonator’s mass, for ...

The Effect of Electrochemical Micro-Milling by Rotating Magnetic Field

H-Y. Shen[1], H-P. Tsui[1], J-C .Hung[1], S-Y. Lin[2], and B-H. Yan[2]
[1]Metal Industries Research and Development Centre, Taichung, Taiwan
[2]National Central University, Chungli, Taiwan

In this work, the process of micro-channels in electrochemical micro-milling by using rotating magnet assisted helical tool is presented. The results show helical tool and Lorentz force of the rotating magnetic field that enhance the renewal of the electrolyte and machining efficiency. The feed rate can be raised under the magnetic field assisted in terms of experimental results; moreover, the ...

3D Stationary and Temporal Electro-Thermal Simulations of Metal Oxide Gas Sensor Based on a High Temperature and Low Power Consumption Micro-Heater Structure

N. Dufour[1], C. Wartelle[2], P. Menini[1]
[1]LAAS-CNRS, Toulouse, France
[2]Renault, Guyancourt, France

The aim of this work was to simulate the electro-thermal behavior of a micro-hotplate used as a gas sensor, in order to compare the obtained results with a real structure. The structure has been designed in 3D and a stationary and a temporal study has been realized.

Design and Analysis of MEMS Micro Mirror using Electro Thermal Actuators

L. Sujatha[1], D. K. Balasubramanian[2], V. S. Selvakumar[1]
[1]Rajalakshmi Engineering College, Chennai, India
[2]University of Central Florida, Orlando, Florida, United States

Micro Mirror is a versatile device which has been gaining popularity and also the importance of MEMS techniques to develop such devices. These mirrors find applications in fields such as optical switching, display and in medical fields for non-invasive imaging. A thermally actuated mirror moves in either vertical or horizontal directions for the given orientation. The ends of thermal actuators ...

Simulation of MEMS Based Pressure Sensor for Diagnosing Sleep Disorders

J. Vijitha[1], S. S. Priya[1], K. C. Devi[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

Sleep apnea is a type of sleep disorder characterized by pauses in breathing or instances of shallow or infrequent breathing during sleep. There is a need to diagnose sleep apnea since it leads to fluctuations in the oxygen level that in turn affect the heart rate and blood pressure. In order to detect this disorder, a Micro Electro Mechanical System (MEMS) based piezoelectric pressure sensor was ...

Single Crystal Diamond NEMS Switch

M. Liao
Optical and Electronic Materials Unit
National Institute for Materials Science

A single-crystal diamond NEMS switch was fabricated while batch production of SCD MEMS/NEMS structures were developed. The diamond NEMS switches exhibit high performance with respect to high controllability, high reproducibility, and good reliability. Modeling and simulations were made that were consistent with experiments.

Modeling Partially Absorbing Biosensors

D. Kappe[1], A. Hütten[1]
[1]Bielefeld University, Bielefeld, Germany

Designing and constructing a lab-on-a-chip device poses a variety of questions. Transport of all required substances, detection of the analyte and its deposition on a sensor have to be incorporated. Different strategies have been developed to achieve good coverages of the sensor, like employing electric or magnetic gradients. On the basis of a ramp like structure, the binding of the analyte to a ...

Droplet Generation by Means of a Two-Fluid Probe

B.P. Cahill[1], M. Quade[1], G. Gastrock[1], K. Lemke[1], J. Metze[1], and D. Beckmann[1]

[1]Institut für Bioprozess und Analysenmesstechnik e.V., Rosenhof, Heilbad Heiligenstadt, Germany

This paper presents a simulation of the operation of a new type of droplet generation probe. This probe, consisting of two concentrically-arranged tubings, is immersed in a beaker of cell medium so that oil is pumped through the outer tubing at a pumping speed less than fluid is drawn into the inner tubing. In this way, droplets of cell medium are entrained into the outlet tubing forming a ...