Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Simulation of Highly Nonlinear Electrokinetics Using a Weak Formulation

G. Soni[1], T. Squires[2], and C. Meinhart[1]

[1]Department of Mechanical Engineering, University of California Santa Barbara, CA, USA
[2] Department of Chemical Engineering, University of California Santa Barbara, CA, USA

We present a numerical model for simulating highly nonlinear electrokinetic phenomena, which occurs at high zeta potentials. In this model, the electric double layer is realized by solving a partial differential equation (PDE) on the double-layer-inducing surface. We also allow for a nonlinear surface capacitance, which relates the surface charge density to the zeta potential of the surface. With ...

Thermally Induced-Noise Reduction Using an Electrostatic Force Feedback

H. Lee, and J.V. Clark
Purdue University, West Lafayette, IN, USA

In this paper we present a method to mitigate the effect of thermally-induced noise in Micro-Electro-Mechanical Systems (MEMS) through a force feedback circuit. Inherent noise-induced vibrations, which would be inconsiderable in macro scale, are considered as a limitation in micro- and nano- scale since it diminishes the high performance of MEMS devices. For instance, depending on the stiffness ...

Multi-Domain Analysis of Silicon Structures for MEMS Based-Sensors

N. Bhalla[1], S. Li[2], and D. Chung[1]
[1]Chung Yuan Christian University, Chungli,Taiwan
[2]National Tsing Hua University, Hsinchu, Taiwan

Investigation in this paper aims at performing Mechanical Stress Strain analysis, Thermal, Piezoresistive and Piezoeletric analysis of Silicon Structures using COMSOL. The simulation results have been cross checked by mathematical calculation.

Efficient Generation of Surface Plasmon Polaritons with Asymmetric Nano-structures

J. Chen
Peking University
China

This paper covers the following: * All-Optical Light Modulation of surface plasmon polaritons (SPPs) is achieved using asymmetric single nanoslits. A high on/off switching ratio of >20 dB and phase variation of >? were observed with the device lateral dimension of only about 2 ?m. * Efficient unidirectional excitation of SPP as well as beam splitting are achieved using the ...

Optical Manipulation of Microscopic Objects

R. Ozawa
Yokohama University
Japan

In recent years, optical manipulation using optical radiation pressure has been widely studied. In this study, the radiation pressure exerted on various kinds of microscopic objects with different laser beams was evaluated by COMSOL Multiphysics software. By changing beam shapes, microscopic objects can be trapped and rotated. This paper is in Japanese.

Design and Implementation of MEMS based Blood Viscometer for INR Measurement

J. G. Immanuel[1], K. Poojitha[1], B. Viknesshwar[1], A. Gupta[1]
[1]PSG College of Technology, Peelamedu, Coimbatore, Tamil Nadu, India

The paper brings out the designing and implementation of blood viscosity monitoring device that gives us the INR to measure the effectiveness of anti coagulant medications .When a blood vessel is damaged, clotting cascade begins that results in blood clot. This process is affected by several medical conditions where it becomes mandatory for a patient to intake anti-coagulants. Thus to monitor ...

Scaling Effect in Air Gap MOSFET

R.V. Iyer[1], Vinay K.[1], A. R. Kamath[1], A. Goswami[1], A. Sharma[1], A. V. Joshi[1], A. Mishra[1], N. S. Pai[1], S. Chakraborty[1], Rakesh D.[1]
[1]PES Institute of Technology, Bangalore, Karnataka, India

This abstract addresses the effect of scaling in air gap MOSFETs and determination of functional relationship between scaling parameter and sensitivity, frequency response. The modelling of the MOSFET and its simulations has been carried out using COMSOL Multiphysics. An air Gap MOSFET in its simplest form can be imagined to be one obtained by replacing the dielectric in a MOSFET with air. The ...

Nanoscale Structure Design in EM Fields Using COMSOL Multiphysics

J. Yoo[1], H. Soh[2], J. Choi[3], S. Song[4]
[1]Department of Mechanical Engineering, Yonsei University, Korea
[2]Hyundai Motor Co., Korea
[3]Samsung Electronics Co., Ltd., Korea
[4]Mando Co., Korea

Nanoscale structural analysis and design is presented. All the simulations are carried out using a finite element solver and optimization is performed using parameter and topology optimization schemes. It is concluded that COMSOL is effective for analysis and design of nanoscale structure design in electromagnetic field and it may be combined with several optimization methods to improve system ...

Design of a MEMS Resonator for a Centre Frequency Greater than 26.35 MHz and Temperature Coefficient Frequency Less than 0.5 ppm

S.Manikandan[1], R.Radeep krishna[1]
[1]Kalasalingam University, Department of ECE, Srivilliputtur ,Krishnan koil, Tamil Nadu, India

The variability of the design parameters caused by material properties like thermal conductivity is the major challenge in Micro Electromechanical System (MEMS). In resonator design the basic problem is that the frequency changes with temperature variation and quantitative explanation with respect to this varies. The change can be attributed to the stability in terms of frequency drift in parts ...

Simulations of Micropumps Based on Tilted Flexible Structures - new

M. J. Hancock[1], N. H. Elabbasi[1], M. C. Demirel[2]
[1]Veryst Engineering, LLC, Needham, MA, USA
[2]The Pennsylvania State University, University Park, PA, USA

Pumping liquids at small scales is challenging because of the principle of reversibility: in a viscous regime, the flow streamlines through a fixed geometry are the same regardless of flow direction. Recently we developed a class of microfluidic pump designs based on tilted flexible structures that combines the concepts of cilia (flexible elastic elements) and rectifiers (e.g., Tesla pump). We ...

Quick Search