Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Magnetic Nanoparticles for Novel Granular Spintronic Devices

A. Regtmeier[1], A. Weddemann[2], I. Ennen[3], and A. Hütten[1]
[1]Dept. of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany
[2]Dept. of Elect. Eng. and Comp. Science, Lab. for Electromagnetic and Electronic Syst., MIT, Cambridge, MA
[3]Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria

Superparamagnetic nanoparticles have a wide range of applications in modern electric devices. Recent developments have identi fied them as components for a new type of magnetoresistance sensor. We propose a model for the numeric evaluation of the sensor properties. Based on the solutions of the Landau-Lifshitz-Gilbert equation for a set of homogeneously magnetized spheres arranged in highly ...

Multi-Domain Analysis of Silicon Structures for MEMS Based-Sensors

N. Bhalla[1], S. Li[2], and D. Chung[1]
[1]Chung Yuan Christian University, Chungli,Taiwan
[2]National Tsing Hua University, Hsinchu, Taiwan

Investigation in this paper aims at performing Mechanical Stress Strain analysis, Thermal, Piezoresistive and Piezoeletric analysis of Silicon Structures using COMSOL. The simulation results have been cross checked by mathematical calculation.

Simulation of Evaporating Droplets on AFM-Cantilevers II: Confocal Microscopy and Transversal Bending

T. Haschke[1], E. Bonaccurso[2], H.J. Butt[2], F. Schönfeld[3], and W. Wiechert[1]
[1] Universität Siegen, Lehrstuhl für Simulationstechnik, Siegen
[2] Max-Planck-Institut für Polymerforschung, Mainz
[3] Institut für Mikrotechnik Mainz GmbH, Mainz

The evaporation process of microscopic drops was investigated by depositing them onto atomic force microscope (AFM) cantilevers and measuring the deflection of the cantilever in response to the presence of the drop. We could thus improve a previously presented FE simulation model by comparing the simulations of the cantilever’s transversal deflection to 3-D images of the cantilever’s ...

Design and Modeling of a Micro-active Suspension

T. Verdot, and M. Collet
Dept. of Applied Mechanics, FEMTO-ST Institute, Besançon, France

Nowadays, lightweight materials are widely used to reduce weight and increase available space in moving structures such as cars or aircraft. However, they constitute an intense vibrating environment that can strongly affect the operation of embedded micro-transducers such as frequency generators or inertial sensors. To alleviate this problem, we propose the concept of a Micro-Active Suspension ...

3D Stationary and Temporal Electro-Thermal Simulations of Metal Oxide Gas Sensor Based on a High Temperature and Low Power Consumption Micro-Heater Structure

N. Dufour[1], C. Wartelle[2], P. Menini[1]
[1]LAAS-CNRS, Toulouse, France
[2]Renault, Guyancourt, France

The aim of this work was to simulate the electro-thermal behavior of a micro-hotplate used as a gas sensor, in order to compare the obtained results with a real structure. The structure has been designed in 3D and a stationary and a temporal study has been realized.

Designing an Array of Nanocalorimeters for Screening Biochemical Interactions

F. Torres
Palo Alto Research Center

In this presentation we present our analysis of the PARC Nanocalorimeter. Calorimetry is basically the measuring of heat of chemical reactions or physical changes. Nanocalorimetry is Calorimetry at the Nanometer scale. The PARC Nanocalorimeter is a special type of Calorimeter, it consists of arrays of Nanocalorimeters. The PARC Nanocalorimeter is intended to be used for screening biochemical ...

Finite Element Sensitivity Analysis

M. Perry
London School of Economics

In this presentation we study a PZT Distributed Mode Actuator. In particular, we cover the modeling strategy, the governing equations, modeling setup, the solution and validation. The presentation also gives a comparison between the usage of different Numerical Methods for solving the Partial Differential Equations for this particular type of ...

Design and Development of Microsystems within a Corporate Research Environment by Utilizing Comsol Multiphysics

A. Frey
Siemens AG
Corporate Research & Technologies
Munich, Germany

Alexander Frey received his M.A. degree from the University of Texas, Austin, in 1994, the Dipl. Phys. degree from the University of Wuerzburg, Germany in 1997 and the PhD from the Saarland University, Germany in 2010. In 1997 he joined Research Laboratories of Siemens working on the design of DRAM sensing circuits. In 1999 he joined Corporate Research, Infineon, Munich, Germany. He was engaged ...

COMSOL Computational Fluid Dynamics for Microreactors Used in Volatile Organic Compounds Catalytic Elimination

M. Olea[1], S. Odiba[1], S. Hodgson[1], A. Adgar[1]
[1]School of Science and Engineering, Teesside University, Middlesbrough, United Kingdom

Volatile organic compounds (VOCs) are organic chemicals that will evaporate easily into the air at room temperature and contribute majorly to the formation of photochemical ozone. They are emitted as gases from certain solids and liquids in to the atmosphere and affect indoor and outdoor air quality. They includes acetone, benzene, ethylene glycol, formaldehyde, methylene chloride, ...

A Methodology For The Simulation Of MEMS Spiral Inductances Used As Magnetic Sensors

S. Druart, D. Flandre, and L.A. Francis
Université catholique de Louvain - ICTEAM, Louvain-la-Neuve, Belgium

In this paper, a methodology to simulate the electric behavior of spiral inductances is presented and discussed. All the methodology is built with the COMSOL software used with the Matlab scripting interface and then allows performing fully parameterized simulations. The program architecture is explained and is used to simulate two applications. The first calculates the voltage induced by an ...

Quick Search