Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modelling of Micro/Macro Densification Phenomena of Cu Powder during Capacitor Discharge Sintering

G. Maizza[1] and A. Tassinari[1]

[1]Dipartimento di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Torino, Italy

Capacitor Discharge Sintering (CDS) is an ultrafast Electric Current Assisted Sintering method (u-ECAS) suited for electrically conductive powders. It is characterized by relatively short processing times (milliseconds range) and much lower sintering temperatures than the melting point of the powders. However, the CDS basic phenomena are not fully understood yet neither at the macroscale nor at ...

Numerical Simulations of Magnetic Nanoparticle Suspensions as Interactive MRI Contrast Agents

P. Cantillon-Murphy1, E. Adalsteinsson1,2, and M. Zahn1

1Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
2MIT Division of Health Sciences and Technology, Cambridge, MA, USA

The application of ferrofluid suspensions has become increasingly important in biomedicine with the development of SPIO contrast agents in magnetic resonance imaging (MRI).This work explores the application of established ferrohydrodynamic theory to the field of MR imaging with the intention of using the characteristic ferrofluid spin-velocity as a source of image contrast in MRI.A particular ...

Deformation of Biconcave Red Blood Cell in the Dual-Beam Optical Tweezers

Y. Sheng, and L. Yu
University Laval
Quebec City, QC

A biconcave-shaped Red Blood Cell was trapped and deformed in a dual-trap optical tweezers. The two highly focused trapping beams of Gaussian intensity distribution were modeled as background field in the COMSOL Radio Frequency Module. The 3D radiation stress distribution on the cell surface was computed via the Maxwell stress tensor. The 3D deformation of the cell was computed with the COMSOL ...

Ferromagnetic Materials for MEMS- and NEMS-Devices

A. Weddemann, J. Jadidian, S. Khushrushahi, Y. Kim, and M. Zahn
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge MA

The modeling of ferromagnetic materials is a challenging task of high industrial and academic impact. Thin film and granular systems form the basis of novel spintronic devices such as modern hard drives with a high data area storage density. In order to push the current limits even further and to design more efficient devices, a strong understanding of the governing dynamics is required. We ...

Influence of Electrode Kinetics on Lithium-ion Battery Characteristics

H. Machrafi[1,2], S. Cavadias[2]
[1]University of Liège, Thermodynamics of Irreversible Phenomena, Liège, Belgium
[2]University Pierre et Marie Curie, Laboratoire des Procédés Plasma et Traitement de Surface, Paris, France

The purpose of this work is to show whether an important difference in Lithium solid concentration and electrolyte concentration can be observed in a Lithium-ion battery model, when considering either the Butler-Volmer kinetics or the Tafel kinetics for describing the electrode kinetics (including a boundary layer between the electrolyte and the electrode particles). During discharge, the lithium ...

Time Dependent Simulations of Thermoelectric Thin Films and Nanowires for Direct Determination of their Efficiency with COMSOL Multiphysics®

M. Muñoz Rojo[1], J. Jose Romero[1], D. Ramos[1], D. Borca-Tasciuc[2], T. Borca-Tasciuc[2], M. Martín Gonzalez[1]
[1]Instituto de Microelectrónica de Madrid, Madrid, Spain
[2]Rensselaer Polytechnique Institute, Troy, New York, USA

Thermoelectric materials are one of the most promising materials for future and nowadays energy harvesting devices, as they can convert heat into electricity and vice-versa. The efficiency of thermoelectric materials is related with the figure of merit, ZT. Our work deals with the determination of the parameters that affect the measurement of the ZT with the Harman technique and the best ...

Modelling of High Pressure Discharge Lamps

J-B. Rouffet, S. Bhosle, G. Zissis, and R. Ruscassié
Université Paul Sabatie, Toulouse

This paper presents the modeling of high pressure discharge lamps, which are complex molecular systems, using COMSOL Multiphysics. The model accounts for the momentum, mass and energy conservation equations.

Extraction of Thermal Characteristics of Surrounding Geological Layers of a Geothermal Heat Exchanger by COMSOL Multiphysics® Simulations - new

N. Aranzabal[1], J. Martos[1], J. Soret[1], J. Torres[1], R. García-Olcina[1], Á. Montero[2]
[1]Technical School of Engineering, University of Valencia, Valencia, Spain
[2]Department of Applied Physics, Politechnical University of Valencia, Valencia, Spain

It has been demonstrated that is possible obtain the thermal parameters of geological layers of a BHE (Borehole Heat Exchanger) by fitting temperature evolution in an observer pipe inserted into borehole.

Design and Multiphysics Analysis of MEMS Capacitive Microphone

N. J. Krishnapriya[1], M. R. Baiju[1]
[1]College of Engineering, Trivandrum, Kerala, India

In this paper, design and analysis of a novel MEMS capacitive microphone which uses corrugations and perforations in diaphragm is presented. The corrugation and perforation in diaphragm reduces the residual stress and increases the mechanical sensitivity of diaphragm. Instead of the perforated back plate, holes have been made on the diaphragm. Therefore, potassium hydroxide (KOH) etching can be ...

Influence of Thermal Conductivity and Plasma Pressure on Temperature Distribution and Acoustical Eigenfrequencies of High-Intensity Discharge Lamps

J. Schwieger[1], B. Baumann[1], M. Wolff[1], F. Manders[2], J. Suijker[2]
[1]Heinrich-Blasius-Institute of Physical Technologies, Hamburg University of Applied Sciences, Hamburg, Germany
[2]Philips Lighting, Turnhout, Belgium

High-intensity discharge (HID) lamps are energy-efficient light sources with excellent color qualities. A three-dimensional model of a low-wattage lamp, which includes plasma, electrodes, and burner walls, was developed in COMSOL Multiphysics®. Most parameters appearing in the coupled differential equations of the model, such as viscosity, thermal and electrical conductivity are ...

Quick Search