Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Influence of Electrode Kinetics on Lithium-ion Battery Characteristics

H. Machrafi[1,2], S. Cavadias[2]
[1]University of Liège, Thermodynamics of Irreversible Phenomena, Liège, Belgium
[2]University Pierre et Marie Curie, Laboratoire des Procédés Plasma et Traitement de Surface, Paris, France

The purpose of this work is to show whether an important difference in Lithium solid concentration and electrolyte concentration can be observed in a Lithium-ion battery model, when considering either the Butler-Volmer kinetics or the Tafel kinetics for describing the electrode kinetics (including a boundary layer between the electrolyte and the electrode particles). During discharge, the lithium ...

Modeling the Effect of Headspace Steam on Microwave Heating of Mashed Potato - new

J. Chen[1], K. Pitchai[1], D. Jones[1], J. Subbiah[1]
[1]University of Nebraska-Lincoln, Lincoln, NE, USA

Introduction: Domestic microwave ovens are widely used to heat food products, because of rapid and convenient heating. Nonuniform heating is the biggest issue in microwave heating process, which also causes food quality and safety issues. Microwave heating models are promising tools to assist in developing food products that deliver uniform heating. Due to intensive heating, moisture evaporation ...

Coupled Structural and Magnetic Models: Linear Magnetostriction in COMSOL

J. Slaughter[1]
[1]Etrema Products, Inc., Ames, Iowa, USA

Accurate modeling of magnetostrictive materials and devices requires coupling of electrical, magnetic, mechanical, and possibly acoustic domains. There are relatively few finite  element software packages that include all these physical models and even fewer that include magnetostrictive models. Comsol Multiphysics was used to create linear magnetostrictive models with fully coupled physics. ...

Influence of Thermal Conductivity and Plasma Pressure on Temperature Distribution and Acoustical Eigenfrequencies of High-Intensity Discharge Lamps

J. Schwieger[1], B. Baumann[1], M. Wolff[1], F. Manders[2], J. Suijker[2]
[1]Heinrich-Blasius-Institute of Physical Technologies, Hamburg University of Applied Sciences, Hamburg, Germany
[2]Philips Lighting, Turnhout, Belgium

High-intensity discharge (HID) lamps are energy-efficient light sources with excellent color qualities. A three-dimensional model of a low-wattage lamp, which includes plasma, electrodes, and burner walls, was developed in COMSOL Multiphysics®. Most parameters appearing in the coupled differential equations of the model, such as viscosity, thermal and electrical conductivity are ...

Simulation of Wear using LiveLink™ for MATLAB®

D. Sutton[1]
[1]National Centre for Advanced Tribology at Southampton, University of Southampton, Southampton, United Kingdom

An incremental wear model has been developed using COMSOL Multiphysics® with MATLAB® to predict the evolution of component geometry as a result of wear. Whilst Archard’s wear law is a well-known empirical model for the prediction of wear volume, the design engineer is interested in changes in tolerance as a result of component geometry. At each time step, the simulation extracts the pressure ...

Finite Element Analysis of Electro-mechanical Deflection of Cantilevers for SPM and MEMS Applications

D. Moro, and G. Valdrè
University of Bologna

The understanding of the distribution of electrostatic forces at the nanoscale is of fundamental importance for the development of nanotechnology. In this work, in order to quantify the EFM cantilever/tip-sample interaction, we present a 3D static Finite Element Analysis of the electromechanical interaction between conductive probes and samples, using COMSOL Multiphysics. The simulation ...

Analysis of Highly-dense LED Structures

Te-Yuan Chung
National Central University

In this presentation we consider LED lighting. We begin the presentation by explaining the basics of LED lighting and the opportunities it provides. We then provide examples of different issues with LED lighting, such as optical, electrical, thermal and mechanical issues. The presentation is accompanied by Numerical Models made in COMSOL Multiphysics of LED lighting. At the end of the ...

Optimization of Carbon Nanotube Field Emission Arrays

B. L. Crossley[1], M. Kossler[1], P.J. Collins[1], R. A. Coutu Jr.[1], and L. A. Starman[1]

[1]Air Force Institute of Technology, Wright-Patterson AFB, Ohio, USA

Carbon nanotubes (CNTs) have been proven experimentally to be well suited for field emission applications. An optimized triode configured CNT field emission array is developed using the COMSOL Multiphysics Electrostatics Application to adjust five key physical dimensions to investigate the effects on the enhanced electric field at the CNT emitter tips. The five dimensions studied are CNT spacing, ...

Deformation of Biconcave Red Blood Cell in the Dual-Beam Optical Tweezers

Y. Sheng, and L. Yu
University Laval
Quebec City, QC

A biconcave-shaped Red Blood Cell was trapped and deformed in a dual-trap optical tweezers. The two highly focused trapping beams of Gaussian intensity distribution were modeled as background field in the COMSOL Radio Frequency Module. The 3D radiation stress distribution on the cell surface was computed via the Maxwell stress tensor. The 3D deformation of the cell was computed with the COMSOL ...

Streamer Propagation in a Point-to-Plane Geometry

M. Quast[1] and N.R. Lalic[1]
[1]Gunytronic GmbH, St Valentin, Germany

Corona discharge is used in several applications such as surface treatment of polymers, photocopying or dust removal in air conditioning. Streamer formation is undesirable for most of these applications. Therefore, several studies have been dedicated to investigate the formation and propagation of streamers, which are still not fully understood. The most suitable models to describe streamers are ...

Quick Search