Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

3D Multiphysics Model of Thermal Flow Sensors

C. Falco[1], A. De Luca[1], S. Sarfraz[1], F. Udrea[1]
[1]University of Cambridge, Cambridge, UK

The aim of this work is to present a model capable to describe the behaviour of a thermal flow sensor under every physical aspect. A generic thermal flow sensor relates the flow properties with a variation in the temperature profile inside the device itself. Thus, it is locally heated up with a resistive element biased with an external current, surrounded by one or more temperature sensing ...

Modeling Carbon Nanotube FET Physics in COMSOL Multiphysics®

A. Kalavagunta
Vanderbilt University, Nashville, TN, USA

Carbon nanotube FETs are generating much interest in the nanoscale electronics area. Typically subthreshold behavior in these devices has been modeled using the Laplace equation. Above threshold behavior uses self-consistent solutions to the Poisson and continuity equations. Accurate modeling of Carbon nanotube FETs needs to include quantum effects such as tunneling. Owing to the coupled nature ...

Inductive Conductivity Measurement of Seawater

R. W. Pryor[1]
[1]Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

The conductivity of seawater directly correlates with the concentration of dissolved salts. This model demonstrates a new approach to the methodology of inductive conductivity measurement of seawater and other liquids. COMSOL Multiphysics® was used to build a parametrically swept model of an O-Core Inductive Conductivity Measurement Sensor for Seawater. This sensor model is built using the ...

Developments in a Coupled Thermal-Hydraulic-Chemical-Geomechanical Model for Soil and Concrete

S.C. Seetharam[1], D. Jacques[1]
[1]Performance Assessments Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium

This paper documents current status in the development of a coupled thermal-hydraulic-chemical-geomechanical numerical suite within COMSOL-MATLAB environment to address soil and concrete applications. The mathematical formulations are based on well-established continuum scale models unifying mass conservation, energy conservation, charge conservation, thermodynamic equilibrium and kinetics and ...

Calculation of Capacitances of Symmetrical Triple Coupled CPW Transmission Lines and Multilayer CPW Broadside Coupled Lines Balun

S. Musa[1], M. N. O. Sadiku[1]
[1]Prairie View A&M University, Prairie View, TX, USA

The accurate estimate of values of electromagnetic parameters are essential to determine the final circuit speeds and functionality for designing of high-performance integrated circuits and integrated circuits packaging. In this paper, the quasi-TEM analyses of symmetrical triple coupled Coplanar Waveguide (CPW) transmission lines and multilayer CPW broadside coupled-line balun are successfully ...

The Full-System Approach for Elastohydrodynamic Lubrication

N. Fillot[1], T. Doki-Thonon[1], and W. Habchi[2]
[1]CNRS, INSA, Université de Lyon, Lyon, France
[2]Department of Industrial and Mechanical Engineering, Lebanese American University, Byblos, Lebanon

A ball is in contact with a plane, and a lubricant separates the two surfaces to decrease friction during their relative motion. To avoid wear, the lubricant film thickness should be higher than the surface roughness. The goal of this paper is to show how it is possible to solve efficiently the problem of elastohydrodynamics lubrication with COMSOL Multiphysics®, using a PDE (Partial ...

Modeling of Resonant Optical Trapping in a 2D Photonic Crystal Cavity

U.P. Dharanipathy[1], N. Descharmes[1], Z. Diao[1], M. Tonin[1], R. Houdré[1]
[1]Institut de Physique de la Matière Condensée, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Photonic crystals (PhC) are optical nanostructures that are widely known for their strong spatial and temporal confinement of electromagnetic radiation. Here, we study the resonant optical trapping of a single nanoparticle within a hollow circular photonic crystal cavity. The Electromagnetic Waves (emw) interface of COMSOL Multiphysics® was extensively used during the analysis of all our ...

Demonstration of All-Optical NAND Logic Gate Using Photonic Integrated Circuits

J. T. Andrews[1], R. Choubey[1], O P Choudhary[1], N. Malviya[1], A. Patel[1], M. Kumar[1], S. Chouksey[1], J. Solanki[1]
[1]National MEMS Design Center, Department of Applied Physics, Shri G S Institute of Technology & Science, Indore 452003 MP, India

A logic gate performs a certain Boolean logic operation on one or more logical inputs and produces a single logical output. The logic values are either “true” or “false.” Logic gates are bistable devices, that is, they may yield one of these two possible stable outputs. The NAND logic is a universal gate; any logic operation can be performed with various combinations of NAND logics. Many ...

Simulation of Gas/Liquid Membrane Contactor with COMSOL Multiphysics®

N. Ghasem[1], M. Al-Marzouqi[1], N. Abdul Rahim[1]
[1]UAE University, Al-Ain, United Arab Emirates

A comprehensive mathematical model that includes mass and heat transfer was developed for the transport of gas mixture of carbon dioxide and methane through hollow fiber membrane (HFM) contactor. COMSOL Multiphysics® was used in solving the set of partial, ordinary and algebraic equations. The model was based on "non-wetted mode" in which the gas mixture filled the membrane pores for ...

3D-Model of Asymmetric Thermo-Electric Generator Modules for High Temperature Applications

M. Dannowski[1], W. Beckert[1], L. Wagner[1], H.P. Martin[1]
[1]Fraunhofer IKTS, Dresden, Germany

This paper presents the modeling and simulation of an asymmetric thermoelectric module. The thermoelectric module is characterized by a novel module design and a lager temperature range than conventional high-temperature modules. The materials are boron carbide and titanium diboride which were specially developed for use in high temperature range. Particularity of the model described here is the ...

Quick Search