Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Thermal analysis of a spent fuel transportation cask

P. Goyal[1], V. Verma[1], R. K. Singh[1], and A. K. Ghosh[1]
[1]Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India

Spent fuel transportation casks are required to meet among others (test conditions), the regulatory thermal test conditions in order to demonstrate their ability to withstand specified accidental fire conditions during transport. This paper describes the transient thermal analysis performed with the above intention for a transportation cask. The analysis was carried out using COMSOL Multiphysics ...

Level Set Method for Fully Thermal-Mechanical Coupled Simulations of Filling in Injection and Micro-Injection Molding Process

M. Moguedet[1], R. Le Goff[1], P. Namy[2], and Y. Béreaux[3]
[1]Pôle Européen de Plasturgie, Bellignat, France
[2]SIMTEC, Grenoble, France
[3]INSA de Lyon, Site de Plasturgie, Bellignat, France

In this work we tackle a more theoretical aspect of micro-injection molding, to better understand physics during the process, through numerical simulations of cavity filling. We developed a two phase flow approach by the use of COMSOL Multiphysics®. In a first step, a Level Set model is applied to several configurations: Newtonian and non Newtonian fluid (Cross viscosity law), coupled with a ...

Multiphysics Modelling of Food Dehydration during RF Exposure

R. Renshaw[1]
[1]e2v Ltd., Essex, United Kingdom

There is a requirement for an RF (Radiofrequency) industrial dryer that will be capable of dehydrating foodstuff to the correct level after the product has been fried. RF drying should actively target moisture, due to waters high dielectric properties. An industrial dryer can be optimized using modeling to obtain the correct moisture removal rates in the RF drying process. Measurement of the ...

Numerical Modelling of a Free-Burning Arc in Argon. A Tool for Understanding the Optical Mirage Effect in a TIG Welding Device

J-M. Bauchire[1], E. Langlois-Bertrand[1], and C. de Izarra[1]
[1]GREMI, CNRS, Université d’Orléans, Orléans, France

In this paper, we present the numerical modelling of a free-burning arc and its application to the understanding of optical mirage effect which could occur in a TIG (Tungsten Inert Gas) device used in welding applications.

Crystallization Kinetics of Semi-Crystalline Polymers During Cooling

N. Brahmia[1], P. Bourgin[1], M. Boutaous[1], and D. Garcia[2]
[1] Laboratoire de Recherche Pluridisciplinaire en Plasturgie
[2] Pôle Européen de Plasturgie Belignat

Thermoplastic polymers are frequently used in several industries, and represent the most important group of polymeric materials. During the injection moulding process, the cooling phase including solidification is often the most significant part of the manufacturing cycle. In this paper we study the coupling phenomena between the crystallization and the thermal kinetics in the polymer ...

Modeling of Different Shaped Micro-Cantilevers Used as Chemical Sensors

G. Louarn, M. Collet, and S. Cuenot
Institut des Matériaux Jean Rouxel, Nantes

In this work, we present the modeling of V-shaped silicon micro-cantilevers. The sensitivity of different V-shaped silicon cantilevers is estimated, as a function of the geometrical dimensions of the cantilever.

FEM Analysis in Sensor Development - Siemens VDO

M. Sas, L. Bizon, and A. Krsjak
Siemens VDO Automotive, Frenstat, Czech Republic

When developing sensors with electrical output in automotive applications, different optimizations are taken into consideration; geometry shape, placement of the sensor, ambient conditions, chemical interaction, material composition, electrical components and their influence, accuracy, response and durability.These parameters and factors are designed, evaluated and simulated by proper CAD/CAE ...

Image Denoising and Segmentation using COMSOL Multiphysics

F. Zama
Department of Mathematics, Bologna University, Bologna, Italy

Partial differential equations have recently become popular and useful tools for several image processing tasks such as image de-noising and segmentation.In this work, we implement a unified image de-noising and segmentation approach which is based on a nonlinear diffusion equation with a reactive term for achieving edge preserving smoothing and segmentation. This model is highly nonlinear and ...

Coupled Mechanical/Piezoelectric/Quantum Simulation of Strained Semiconductor InAs Quantum Dots (QD) Emitting at Long Wavelength

J. Even1, F. Doré1, C. Cornet1, L. Pedesseau1, A. Schliwa2, and D. Bimberg2
1FOTON/INSA, CNRS, Rennes, France
2Institut für Festkörperphysik, Technische Universität Berlin, Berlin, Germany

The eight-band k.p model of strained zincblende crystals has been extensively used to describe the electronic structure of III-V semiconductor the present work, we propose to extend these approaches in order to provide a fast and easy method to evaluate the electronic spectra of narrow-gap semiconductor Quantum Dots.A complete 2D axi-symmetric model is proposed for the ...

Dipolar Plasma Source Modeling: A First Approach

S. Bechu, T. V. Tran, A. Lacoste, A. Bès, M. Rayar, and J. Pelletier
Laboratoire de Physique Subatomique et de Cosmologie Centre de Recherche Plasma, Matériaux-Nanostructures, Université J. Fourier, Grenoble, France

The simulation of plasma produced by a dipolar source requires a global, self consistent, modeling of its function. A first optimization of the dipolar source, magnetostatics, microwave propagation and fast electron trajectories (Particles in Cell (PIC) and Monte-Carlo hybrid method) have been performed with COMSOL Multiphysics and MATLAB.

Quick Search