Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Designing a Smart Skin with Fractal Geometry

S. Ni, C. Yang Koh, S. Kooi, and E. Thomas
Institute for Soldier Nanotechnologies
Dept. of Materials Science and Eng.
Cambridge, MA

Recently, the concepts of fractal geometry have been introduced into electromagnetic and plasmonic metamaterials. With their self-similarity, structures based on fractal geometry should exhibit multi-band character with high Q factors due to the scaling law. However, there exist few studies of phononic metamaterials having fractal geometry. COMSOL is used to investigate vector elastic and ...

Modeling the Interaction of Light with Plasmonic Nanoparticles - new

T. Gál[1], Ö. Sepsi[1], P. Koppa[1]
[1]Budapest University of Technology and Economics, Budapest, Hungary

Plasmonic nanoparticles have received increased interest due to their numerous potential applications in the field of optics and optoelectronics. Currently such metallic nanoparticles are applied in semiconductor devices, such as light emitting diodes (LEDs) and solar cells. The optical behaviour of a single plasmonic nanoparticle is can be easily described with several analytic or semianalytic ...

Vertically Emitting Microdisk Lasers

L. Mahler, A. Tredicucci, and F. Beltram
NEST-INFM and Scuola Normale Superiore, Pisa, Italy

We describe the modeling of microdisk lasers displaying vertical emission. The devices are THz quantum cascade lasers with metallic gratings fabricated along the circumference.  The emission properties of the fabricated devices are well explained by the model, good mode control is obtained, and the collected power from a patterned device is increased 50 times with respect to unpatterned ...

Modeling of a Dielectric Barrier Discharge Lamp for UV Production

S. Bhosle, R. Diez, H. Piquet, D. Le Thanh, B. Rahmani, D. Buso
Université de Toulouse, Toulouse, France

Excilamps are artificial Ultraviolet sources based on the emission of excimers or exciplexes. The latter are excited states of weakly bound rare gas or halide/rare gas atoms which emit a photon in the UV region when they dissociate. Dielectric Barrier Discharge (DBD) excilamps are promising UV sources for the future, provided the coupling between their power supply is optimized. The model ...

Analysis of Super Imaging Properties of Spherical Geodesic Waveguide Using COMSOL Multiphysics

D. Grabovi?ki?[1], J.C. González[1], P. Benítez[1], J.C. Miñano[1]
[1]Cedint Universidad Politécnica de Madrid, Madrid, Spain

Negative Refractive Lens (NRL) has shown that an optical system can produce images with details below the classic Abbe diffraction limit. This optical system transmits the electromagnetic fields, emitted by an object plane, towards an image plane producing the same field distribution in both planes. Recently, two devices with positive refraction, the Maxwell Fish Eye lens (MFE) (Leonhardt et al. ...

Design de uma Fibra de Cristal Fotônico para a Propagação de Modos com Momento Angular Orbital

F. B. Mejía [1], M. F. V. de Almeida [1],
[1] Instituto Nacional de Telecomunicações - INATEL, Santa Rita do Sapucaí, MG, Brasil

Uma das formas de se conseguir a multiplexação modal de informações em uma fibra óptica é através do uso do momento angular orbital (OAM). Neste trabalho exploramos a riqueza estrutural das fibras de cristal fotônico (PCF) para aprimorar a transmissão de modos OAM. Usamos o RF Module do software COMSOL Multiphysics para calcular os modos de propagação de uma PCF. Então, através do Livelink™ for ...

Modal Characterization of the Plasmonic Slot Waveguide Using COMSOL Multiphysics

F. Frezza[1], P. Nocito[2], and E. Stoja[1]
[1]Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
[2]MISE, Communication Department, ISCOM, Rome, Italy

We investigate and compare the characteristics of the fundamental guided mode sustained by a subwavelength plasmonic slot waveguide for three types of metals: gold, silver and aluminium. This is done in terms of mode effective index, propagation length, confinement and, as the mode under study is quasi-TEM, we also develop a transmission line model that can be useful in the design of optical ...

Simulation of Bio-medical Waveguide in Mechanical and Optical fields - new

Y. Xin[1], A. Purniawan[1], L. Pakula[1], G. Pandraud[1], P. J. French[1]
[1]Technology University of Delft, Delft, Netherlands

This paper presents a freestanding waveguide to achieve the goal of detecting anastomosis leakage after colon surgery. The freestanding part is a thin membrane consisting of TiO2 rib and SiN ridge. This freestanding waveguide is designed both mechanically and optically to maintain mechanical stability during fabrication and detection process, and at the same time guarantee the detection ...

Large Ray Optics Simulations for the Prediction of Solar Radiation Concentration Due to Reflective Walls

H. Rouch [1],
[1] INOPRO IAO, Villard-de-Lans, France

Abstract: Some of recent and unconventional buildings are using reflective material for their walls. In case of curved walls, like in the Vdara Hotel tutorial, or of complex shape walls like in the present case, the risk of solar radiation concentration is difficult to predict. Such concentration may damage the impinged material. Then it has to be studied by simulation. The presented case ...

TM Wave Propagation in Optical Nanostructures with a Third-Order Nonlinear Response: Modeling and Validation with COMSOL

A. Kildishev[1], E. E. Narimanov[1]
[1]Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA

An enhanced method is used for analysis of third-order nonlinearities in optical nanostructures with scalar TM (H-field) frequency domain formulation. After embedding it in COMSOL Multiphysics it is shown to produce fast and accurate results without superfluous vector E-field formalism. A standard TM representation based on cubic non-linear susceptibility χ(3) results in an intractable ...