Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Evaluation of Internal Resistance and Power Loss in Micro Thermoelectric Generators (µTEGs)

S. Seif[1], K. Cadien[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

One of the major challenges in designing µTEGs is to minimize power loss due to internal resistance (r) of Thermoelectric (TE) materials. To solve this problem we have performed simulation analysis and calculated the internal resistance of eight different TE materials. The internal resistances of these TE materials were then compared to the power generated across the copper electrode as seen in ...

Modeling Light Propagation in Skin for Visualization of Subcutaneous Veins

H. Kwon[1], R. Huancaya[1]
[1]Andrews University, Berrien Springs, MI, USA

Vein visualization systems such as the VeinViewer are vein-contrast enhancement devices that use an infrared camera to highlight blood or the underlying vasculature and project the image in real time onto the skin. Understanding the light propagation in a realistic skin model is critical, but only a few computational models have been developed to account for this particular system. We have ...

A Computational Approach for Simulating p-Type Silicon Piezoresistor Using Four Point Bending Setup

T.H. Tan[1], S.J.N. Mitchell[1], D.W. McNeill[1], H. Wadsworth[2], S. Strahan[2]
[1]Queen's University Belfast, Belfast, United Kingdom
[2]Schrader Electronics Ltd, Antrim, United Kingdom

The piezoresistance effect is defined as change in resistance due to applied stress. Silicon has a relatively large piezoresistance effect which has been known since 1954. A four point bending setup is proposed and designed to analyze the piezoresistance effect in p-type silicon. This setup is used to apply uniform and uniaxial stress along the crystal direction. The main aim of this work is to ...

Optimization of 3D Layered Metal-Dielectric Stacks (MDS) for Near-Field Fluorescence Imaging

P.S. Tan[1], K. Elsayad[2], K. Heinze[1]
[1]Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
[2]Research Institute of Molecular Pathology (IMP), Vienna, Austria

Nano-structures consisting of layered metal-dielectric stacks (MDSs) can be designed to have evanescent transmission and reflection coefficients that oscillate as a function of transverse wavevector and frequency. However, these structures always suffer from the material losses and surface roughness that are detrimental to image reconstruction. As such, we propose an optimized planar anisotropic ...

Numerical Analysis of Perforated Microring Resonator Based Refractive Index Sensor

M. Gabalis[1], D. Urbonas[1], R. Petruskevicius[1]
[1]Institute of Physics of Center for Physical Sciences and Technology, Vilnius, Lithuania

In this work perforated microring resonator based refractive index sensor is presented. Numerical analysis of the microring using COMSOL Multiphysics® was performed. From transmission spectra sensitivity and quality factor of our proposed structure were evaluated. It was shown that perforated microring resonator exhibits higher sensitivity than ordinary microring resonator while also maintaining ...

Incoherent Propagation of Light in Coherent Models

A. Čampa[1], J. Krč[1], M. Topič[1]
[1]University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia

In the finite element based modeling and simulations only the coherent propagation of light is considered. However, in reality when light passes the thick layer it loses the phase information and its coherent nature due to the spatial, temporal or spectral incoherence. In this work, we present two methods to include the incoherent layer in coherent based simulations: (a) phase matching and (b) ...

Design and Optimization of Electrostatically Actuated Micromirror

Anna Thomas[1], Juny Thomas[1], Deepika Vijayan[1], K.Govardhan[2]
[1]VIT University, Sensor System Technology, School of Electronics Engineering, Vellore, Tamil Nadu, India
[2]VIT University, MEMS & Sensor Division, School of Electronics Engineering, Vellore, Tamil Nadu, India

The microscopic size of MEMS devices accounts for strong coupling effects which arise between the different physical fields and forces. Micromirrors are essential parts of microswitches in fiber optic network telecommunication. They are usually 1 to 3 mm in size, fabricated from single crystalline silicon and mostly are electrostatically actuated. The objective is to design the micromirror to ...

Quick Search

141 - 147 of 147 First | < Previous | Next > | Last