Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Efficient Simulation of 3D Electro-optical Waveguides Using the Effective Refractive Index Method

M. Herlitschke, M. Blasl, and F. Costache
Fraunhofer Institute for Photonic Microsystems
Dresden, Germany

3D FEM simulation of millimeter-scale, complex electro-optically induced waveguide based devices demands the use of grids with more than several million nodes. Hence the simulation could take substantial time and require large amounts of available memory. This paper presents a computation algorithm based on the conversion of an initial 3D waveguide structure into an analogous 2D structure, ...

Modeling of Multiconductor Microstrip Systems on Microwave Integrated Circuits

S. Musa[1], M. N. O. Sadiku[1]
[1]Prairie View A&M University, Prairie View, TX, USA

The microstrip line is widely used as the planar transmission line in microwave integrated circuits and high speed interconnecting buses. In this paper, we use COMSOL Multiphysics® to study multiconductor microstrip systems on microwave integrated circuits. We specifically illustrate the modeling of open four and five conductors systems. We successfully demonstrated the calculation of the ...

Electromagnetic Mode Simulation on Optical Fiber Coupling With Transversal Misalignment - new

P. F. Gomes[1], R. G. e Souza[1], F. Beltrán-Mejía[2], J. L. G. Arango[3]
[1]Universidade Federal de Goiás, Jataí, GO, Brazil
[2]Universidade Estadual de Campinas, Campinas, SP, Brazil
[3]Universidad de Pamplona, Pamplona, Colômbia

We used COMSOL Multiphysics® software to calculate the mode distribution by numerically solving the wave equation in the fiber. We consider the transmission from the fiber 1 to the fiber 2. In the first case, the transmission was calculated as function of the wavelength of the propagated mode. We observed that the transmission for the fundamental mode on fiber 2 has a maximum at the same ...

A Study of Optical Sensor Based on Fiber Bragg Grating Using COMSOL Multiphysics®

C. Gavrila[1] and I. Lancranjan[2]


[1]Technical University of Civil Engineering Bucharest, Bucharest, Romania
[2]Advanced Study Centre, National Institute for Aerospace Research “Elie Carafoli”, Bucharest, Romania

Fiber optic sensors can measure a large range of physical, chemical and environmental variables such as temperature, pressure, shape, position, chemical concentration, moisture, etc. Fiber optic sensors provide measurements in applications where the conventional electrical based sensors cannot be used, due to measurement requirements such as extreme temperature, small size, high sensor count, or ...

Modeling of Pulsed Laser Thermal Annealing for Junction Formation Optimization and Process Control

R. Negru [1], K. Huet[1], P. Ceccato[1], B. Godard[1]
[1]Excico, Gennevilliers, France

It is now a well known that the next generation devices in many fields of the semiconductor industry will be based on 3D architectures. In this framework, low thermal budget annealing technological solutions are required. For many applications, either in the field of sensors, microprocessors or high density memories, the Laser Thermal Annealing (LTA), an ultrafast and low thermal budget process, ...

Calculation of Capacitances of Symmetrical Triple Coupled CPW Transmission Lines and Multilayer CPW Broadside Coupled Lines Balun

S. Musa[1], M. N. O. Sadiku[1]
[1]Prairie View A&M University, Prairie View, TX, USA

The accurate estimate of values of electromagnetic parameters are essential to determine the final circuit speeds and functionality for designing of high-performance integrated circuits and integrated circuits packaging. In this paper, the quasi-TEM analyses of symmetrical triple coupled Coplanar Waveguide (CPW) transmission lines and multilayer CPW broadside coupled-line balun are successfully ...

Numerical Analysis of Perforated Microring Resonator Based Refractive Index Sensor

M. Gabalis[1], D. Urbonas[1], R. Petruskevicius[1]
[1]Institute of Physics of Center for Physical Sciences and Technology, Vilnius, Lithuania

In this work perforated microring resonator based refractive index sensor is presented. Numerical analysis of the microring using COMSOL Multiphysics® was performed. From transmission spectra sensitivity and quality factor of our proposed structure were evaluated. It was shown that perforated microring resonator exhibits higher sensitivity than ordinary microring resonator while also maintaining ...

Methods to Optimize Plasmonic Structure Integrated Single-Photon Detector Designs - new

M. Csete[1], G. Szekeres[1], B. Banhelyi[2], A. Szenes[1], T. Csendes[2], G. Szabo[1]
[1]Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
[2]Department of Computational Optimization, University of Szeged, Szeged, Hungary

Introduction: Predesigned plasmonic structures are capable of enhancing optical phenomena, the key concept is tailoring the integrated devices' composition to engineer the spectral response and near-field distribution [1]. Our previous studies have shown that three-quarter-wavelength periodic plasmonic structures are capable of improving single-photon detection efficiency [2, 3]. Parametric sweep ...

Simulation of Photonic Crystals Particle Filling by Electrospray

A. Coll, V. Di Virgilio, S. Bermejo, and L. Castañer
Universitat Politècnica de Catalunya, Barcelona, Spain

Photonic crystals are widely used in optical applications as waveguides and band filters. Filling the periodic structural material of photonic crystals with other materials is very useful in order to change the optical properties of the devices. In this paper electrostatic COMSOL simulations describing an electrospray deposition of particles in macroporous structures are performed.

Simulation of Light Coupling Reciprocity for a Photonic Grating

V. Kivijärvi[1], M. Erdmanis[1], I. Tittonen[1]
[1]Aalto University, Department of Micro- and Nanosciences, Espoo, Finland

SOI (Silicon on Insulator) technology utilizes silicon components on SiO2 layer. Propagating electric field distribution in a SOI waveguide is called mode of the waveguide. Photonic gratings are formed by etching grooves on the top of a waveguide. Gratings can operate in two directions. They can guide incident beam into a waveguide or a waveguide mode out of the structure. We study the grating ...

Quick Search