Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Modeling of Chemo-Mechanical Coupled Behavior of Cement Based Material

D. Hu[1], F. Zhang[2], H. Zhou[3], and J. Shao[1]
[1]LML, UMR8107, CNRS, University of Lille I, Lille, France
[2]School of Civil Engineering and Architecture, Hubei University of Technology, Wuhan, China
[3]State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China

A lixiviation-mechanical coupled model is developed for fiber reinforced concrete within this framework; both the influence of chemical degradation on short and long term mechanical behavior and the influence of mechanical loading on the diffusion coefficient can be considered. The elastic mechanical properties are written as function of chemical damage. A Drucker–Prager typed criterion with ...

High Field Magnetic Diffusion into Nonlinear Ferrimagnetic Materials

J-W. Braxton Bragg[1], J. Dickens[1], A. Neuber[1], and K. Long[2]
[1]Center for Pulsed Power and Power Electronics, Texas Tech University, Lubbock, TX
[2]Dept. of Mathematics, Texas Tech University, Lubbock, TX

Ferrimagnetic based, coaxial nonlinear transmission lines (NLTLs) provide a means to generate sub-nanosecond risetime pulses (from nano-second input pulses) or megawatt level high power microwave oscillations, depending on the geometry, material, and external bias fields. This investigation uses the commercially available, finite element solver COMSOL to provide insight into pulse behavior. ...

Non Linear Mechanical and Poromechanical Analyses: Comparison with Analytical Solutions

M. Souley, and A. Thoraval
Ecole des Mines
Parc de Saurupt, France

The long-term behaviour of the underground excavations is a social and economic challenge particularly in the contexts of post-mining or radioactive waste storage. Numerical modelings are currently used to understand and forecast the complex behaviour of rock mass around the underground cavities. In order to accurately perform these multiphysics modelings at high space and time scales, it is ...

Multiphysics Modeling of a Metal Foam

B. Chinè [1][3], M. Monno[2]
[1]Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy
[2]Politecnico di Milano, Dipartimento di Meccanica, Milano, Italy
[3]Instituto Tecnologico de Costa Rica, Cartago, Costa Rica

Introduction: In metal foams production, nucleated gas bubbles expand in a heated metal in a mold, then the foam cool and solidify. Thereby energy, mass and momentum transfer mechanisms are present simultaneously in the system and must be taken into account. Metal foam (Figure 1) can be obtained by foaming a precursor, i.e. a mixing of aluminum (Al) powders with the blowing agent TiH2, placing it ...

Upscaling of Heterogeneous Rock Properties via a Multiscale Image to Simulation Approach

S. Zhang[1], M. Pal[2], P. Barthelemy[1], M. Lei[1]
[1]Visualization Sciences Group, Burlington, MA, USA
[2]Shell International Exploration and Production, Rijswijk, The Netherlands

The mass and recoverability of oil and gas in unconventional reservoirs strongly depend on the understanding the petrophysical properties of the rocks at a large range of scales. Three-dimensional imaging is capable of unveiling the detailed microstructures within the rocks down to the nanometer scale. Using a multiscale imaging protocol, a Devonian shale rock sample with heterogeneities is ...

Piezoelectric Buzzer Optimization for Micropumps

A. Garcia[1], A. Marcus[1], F. Tejo[1], C. Precker[1], C. Moreira[2]
[1]Universidade Federal de Campina Grande, Campina Grande, PB, Brazil
[2]Instituto Federal de Alagoas, Maceio, AL, Brazil

Piezoelectric buzzers are low cost devices which can be used successfully as actuators in diaphragm-based micro-pumps. The buzzers are piezoelectric wafers (lead-zirconate-titanate-PZT) that are glued on a brass membrane and they are available within different sizes and thicknesses. For the best performance of a diaphragm pump, it is necessary to have a large displacement of the membrane. This ...

Modeling of Atmosphere Revitalization

R. Coker[1], J. Knox[1], K. Kittredge[1]
[1]NASA - Marshall Space Flight Center, Huntsville, AL, USA

All spacecraft systems must be minimized with respect to mass, power, and volume. Here, we focus on current efforts to improve system efficiency and reliability for water separation systems to be used on crewed vehicles. These development efforts combine sub-scale systems testing and multi-physics simulations to evaluate candidate approaches. The best performing options will then be ...

Temperature Compensated AIN Based SAW Simulation using COMSOL

Andrew B. Randles[1]
Julius M. Tsai[1]
Piotr Kropelnicki[1]
Hong Cai[1]

[1]Institute of Microelectronics, Agency of Science, Technology, and Research, Singapore, Singapore

We have modeled surface acoustic wave (SAW) devices composed of piezoelectric materials: aluminum nitride (AlN), lithium niobate (LiNbO3), and quartz. These materials are often used in RF filters and wireless sensors, which require temperature compensation for stability. Using our COMSOL Multiphysics® simulation with published values of thermal expansion for each material, we simulated the TCF ...

Local Electroporation of Single Adherent Cells by Micro-Structured Needle Electrodes

K. K. Sriperumbudur[1], P. J. Koester[1], M. Stubbe[1], C. Tautorat[1], J. Held[2], W. Baumann[1], and J. Gimsa[1]
[1] University of Rostock, Chair of Biophysics, Gertrudenstr. 11a, 18057 Rostock, Germany
[2] Microsystem Material Laboratory, Department of Microsystems Engineering (IMTEK), University of Freiburg, Germany

In spite of its low throughput, Patch-Clamp is the established method for intracellular measurements of the transmembrane potential. To address this problem, we have developed new biosensor-chips with micro-structured needle electrodes (MNEs). MNE-penetration of single cells growing on the MNE-tips leads to a situation comparable to the whole-cell mode in classical Patch Clamp. MNE-penetration ...

Modeling and Analysis of a Feedback-Controlled Active Magnetic Levitation System using COMSOL Multyphysics Finite Element Software

M. Nabi[1], and K. V. Ajeeth[1]
Department of Electrical Engineering, Indian Institute of Technology Delhi, India

Magnetic levitation systems have been studied in the context of high-speed transportation as maglev trains, high speed machinery as magnetic bearings, and other similar engineering applications. In this paper, a three dimensional arbitrary shaped object is modeled and analyzed through COMSOL. Mechanically the levitated object has three degrees of freedom- two along the x and y axes and the third ...

Quick Search

2661 - 2670 of 3228 First | < Previous | Next > | Last