Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Pre-design of a Molten Salt Thorium Reactor Loop

J. P. Caire, and A. Roure
LEPMI-ENSEE, Saint Martin d'Hères, France

The generation 4 of molten salt reactors using the thorium cycle are characterized by a temperature close to 1000 oC. The very large heat transfers involved between the reactor core and the external parts with minimal thermal losses are a major issue. This study investigated a possible inner loop made of a series of conventional graphite filter plate exchangers, pipes and pumps, using the COMSOL ...

Cross Method of Nanoscale Modeling and Macroscopic Data to Estimate Anion Effective Diffusion Coefficient in Argillite

N. Diaz1, F. Goutelard1, and P.Turq2
1CEA/DEN/DPC/SECR/L3MR, CEN Saclay, Gif-sur-Yvette, France
2LI2C, Université Pierre et Marie Curie, Paris, France

Based on a mechanistical understanding of solute migration in pure clay at nanometric scale, a model has been developed to evaluate the effective diffusion coefficient De in clay-rocks at the centimetre scale from the description of the mineralogy (and its heterogeneity) of the rock at the micrometer scale.

Modeling the Coupled Heat and Mass Transfer during Fires in Stored Biomass, Coal and Recycling Deposits

F. Ferrero, M. Malow, A. Berger, and U. Krause
Bundesanstalt für Materialforschung und prüfung (BAM), Berlin, Germany

In this paper, advances in the development of a numerical model for predicting the possibility of self-ignition in stored biomass, coal heaps or underground seams and dump deposits are presented. Results from the performed simulations are compared with experimental data. Finally, some conclusions and the possibilities for future work are drawn.

Teaching Computer-aided Modeling of Biomedical Processes in an Upper Level Undergraduate Course using COMSOL Multiphysics

V. Rakesh, and A. K. Datta
Dept. of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA

Computer-Aided Engineering: Applications to Biomedical Processes is a three credit course intended for seniors and juniors in Biological Engineering and Mechanical Engineering at Cornell University with a class size of about 50-55 students.The course introduces finite element modeling using COMSOL Multiphysics to solve biological/biomedical problems to students with a background in transport ...

A Numerical Approach to the Heat Transfer Studies inside the Human Eye

E. H. Ooi, and E. Ng Yin Kwee
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore

In this presentation, abnormalities in the human eye are studied. The outline for the presentation is:Background of the ResearchModel DevelopmentSteady state solution of a normal eyeEffects of aqueous humor hydrodynamics on the temperature distribution inside the human eyeSummary

Design and Modeling of a Micro-active Suspension

T. Verdot, and M. Collet
Dept. of Applied Mechanics, FEMTO-ST Institute, Besançon, France

Nowadays, lightweight materials are widely used to reduce weight and increase available space in moving structures such as cars or aircraft. However, they constitute an intense vibrating environment that can strongly affect the operation of embedded micro-transducers such as frequency generators or inertial sensors. To alleviate this problem, we propose the concept of a Micro-Active Suspension ...

Hemodynamic Therapy of Middle Cerebral Artery Vasospasm Guided by a Multiphase Model of Oxygen Transport

S. Conrad[1,2], P. Chittiboina[3], and B. Guthikonda[3]

[1]Department of Bioinformatics and Computational Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
[2]Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, USA
[3]Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA

Cerebral vasospasm is a complication of subarachnoid hemorrhage and other neurosurgical emergencies that reduce blood flow to the brain. Part of the approach to management of vasospasm is to improve flow through the stenotic areas by reducing by decreasing blood viscosity and enhancing flow through the stenosis. To examine the interaction of these factors, we applied computational fluid dynamics ...

Microscale Modelling of the Frequency Dependent Resistivity of  Porous Media

J. Volkmann, O. Mohnke, N. Klitzsch, and R. Blaschek
E.ON Energy Research Center, RWTH-Aachen, Aachen, Germany

The frequency dependent electrical impedance of porous media is studied by modelling the charge transport in the electrolyte filled pore space using COMSOL Multiphysics.  The corresponding experimental method, called Spectral Induced Polarization (or Impedance Spectroscopy), shows a frequency dependent phase shift between a measured electric current and an applied alternating voltage. It is ...

Electric Field Distributions and Energy Transfer in Waveguide-Based Axial-Type Microwave Plasma Source

H. Nowakowska[1], M. Jasínski[1], and J. Mizeraczyk[1,2]
[1]The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk, Poland
[2]Dept. of Marine Electronics, Gdynia Maritime University, Gdynia, Poland

In this paper, we examine changes of the electric field distributions in waveguide-based axial-type microwave plasma source (MPS) during tuning procedure. The distributions strongly depend on position of the movable short, so does the wave reflection coefficient of the incident wave. A method of determining tuning characteristics of the MPS consisting in treating the MPS as a two-port network, ...

Investigating the Use of a Piezoelectric Actuator for the Appendages of a Microrobot

J. Clark, and J. Clark
Purdue University, West Lafayette, IN, USA

We investigate the use of a piezoelectric actuator for the appendages of a microrobot. Possible uses may include micro assembly, mobile surveillance, etc. What is different about this microrobot is that it uses 2 degrees of freedom, low powered piezoelectric flexures, while attempting to mimic the maneuverability of an ant-like insect. In the paper, we use COMSOL to characterize this type of ...

Quick Search

2731 - 2740 of 3605 First | < Previous | Next > | Last