Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Stress State Determination in Nanoelectronic Silicon Devices Coupling COMSOL Multiphysics and a Recursive Dynamical CBED Pattern Simulation

A. Spessot[1,2], S. Frabboni[1], A. Armigliato[3], and R. Balboni[3]
[1]Numonyx Advanced R&D NVMTD-FTM, Agrate Brianza, Italy
[2]National Research Center S3, CNR-INFM and Department of Physics, University of Modena e Reggio Emilia, Modena, Italy
[3]CNR-IMM Section of Bologna, Italy

Strained technology is being promoted as the best way to extend the performance of semiconductor transistors. An inhomogeneous layer deposited on top of a silicon device can induce a strong modification in the real silicon strain state, and consequently in its electronic performance. Coupling the finite elements analysis done by COMSOL with a recursive CBED and LACBED dynamical simulation, we are ...

Steady-state simulation of mono-valent ion distributions within a nanofluidic channel

W. Booth[1], J. Schiffbauer[1], J. Fernandez[2], K. Kelley[3], A. Timperman[3], and B. Edwards[1]

[1]Physics Department, West Virginia University, Morgantown, WV, USA
[2]Chemical Engineering Department, West Virginia University, Morgantown, WV, USA
[3]Chemistry Department, West Virginia University, Morgantown, WV, USA

The steady-state non-equilibrium distributions of two species of mono-valent ions around a charged nanofluidic channel have been examined. Large reservoirs were placed on either side of the nanoscale channel to simulate bulk concentration of ions in a fluid. Results from COMSOL Multiphysics simulations show that the effect of the potential bias across the nanochannel yields a significant ...

Analyzing the Performance of Lined and Unlined Simplified Cylindrical Cloaks

J. McGuirk and P. Collins
Air Force Institute of Technology, WPAFB, OH, USA

The performance of simplified cylindrical cloaks with various material parameters was investigated. The performance metric was the overall scattering width of the cloak with various objects in the hidden region. COMSOL was used to simulate three cloaks with different material parameters to determine the total field in the simulation domain. For all cloaks simulated in this effort, a PEC-lined ...

Finite Element Analysis of Multiconductor Interconnects in Multilayered Dielectric Media

S. Musa and M. Sadiku
College of Engineering, Prairie View A&M University, Prairie View, TX, USA

Due to the complexity of electromagnetic modeling, researchers and scientists always look for development of accurate and fast methods to extract the parameters of electronic interconnects and package structures. In this paper, we illustrate modeling of multiconductor interconnects in multilayered dielectric media using COMSOL Multiphysics and the finite element method. We specifically determine ...

Analysis of the Mechanical Behavior of Violins Based on a Multi-physics Approach

E. Ravina
Dept. of Mechanics and Machine Design, Research Centre on Choral and Instrumental Music (MUSICOS), University of Genoa, Italy

The paper attempts to give a contribution to the dynamic analysis of musical instruments. A multidisciplinary approach oriented to the study of mechanical, structural, vibratory and acoustical phenomena related to stringed instruments is discussed. The case study focused in this paper concerns the violins family: the geometry and the vibratory propagation of this instrument is very complicated to ...

Simulation of MEA in PEMFC and Interface of Nanometer-Sized Electrodes

Q. Zhang, Y. Liu, and S. Chen
Wuhan University, College of Chemistry and Molecular Science, Wuhan, China

COMSOL Multiphysics is a very helpful simulation software in our researches on both PEMFC and nanometer-sized electrodes. In the first part of our presentation, the influence of humidity and temperature to the performance of PEMFC are studied by simulating the MEA (membrane electrode assembly) in PEMFC. In the second part, models of different nanometer-sized electrodes, including spherical ...

Windows HPC Server 2008 R2 Goals and Overview

V.M. Srinivas
Technical Computing, Microsoft Corporation, India

A Mechanical Engineer from Madras University and an MBA from Symbiois Pune, Vinoo has been working in the Indian Enterprise and Technical Computing space for more than 10 years. He has been consulting customers for their Technical and High Performance Computing needs for the past 5 years. He has been involved in architecting some of the large HPC clusters in the country across Fundamental ...

Numerical Simulation of a Building Envelope with High Performance Materials

M.H. Baghban[1], P. Jostein Hovde[1], and A. Gustavsen[2]
[1]Civil and Transport Engineering Department, Norwegian University of Science and Technology, Trondheim, Norway
[2]Department of Architectural Design, History and Technology, Norwegian University of Science and Technology, Trondheim, Norway

Simulation tools for building physics problems play an important role in design and understanding the behavior of energy efficient buildings. There are different tools available for simulation of these problems, but each simulation tool has its own advantages and limitations. In this paper, a heat transfer problem in an exterior building wall with high performance materials has been simulated in ...

Numerical Simulation Of Laminar Flow Above And Below Triangular Bedforms

C. Gualtieri
University of Napoli Federico II, Naples, Italy

This paper presents some results of numerical simulations carried out to investigate the basic hydrodynamic interactions between the laminar flow in the water column above triangular bedforms and the Darcian flow in the underlying permeable sediments. The flow was described by the Navier-Stokes equation in the free region and the Darcy equation in the porous region. Numerical simulations were ...

Numerical Implementation Of A Multivariable Thermomechanical Model For Unsaturated Bentonite

V-M. Pulkkanen, and M. Olin
VTT Technical Research Centre of Finland, Espoo, Finland

A compacted bentonite clay buffer is planned to be used as a part of the engineered barrier system in the KBS-3 concept for the disposal of spent nuclear fuel. Simulations together with experimental studies are needed to ensure that bentonite fulfills its safety functions in the concept. In this paper, one type of bentonite model, namely a thermomechanical model developed by Jussila, is presented ...

Quick Search

2741 - 2750 of 3228 First | < Previous | Next > | Last