Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Numerical Simulation for Dimensioning a Rock Heating Experiment

P. Ralek, and M. Hokr
Technical University of Liberec
Liberec, Czech Republic

The paper deals with simulation of rock heating experiment in underground, testing the rock properties for geothermal application. The modeled process is unsteady heat conduction in 3D. We made several parametric studies to find the possible temperature range with uncertainty in some of the parameters - in particular an interval around the laboratory measured heat conductivity and capacity and ...

COMSOL Multiphysics Modelling for Measurement Device of Electrical Resistivity in Laboratory Test Cell

C. Rémi, M. Bergeron, and S. Moreau
Antony, France

Bioreactor landfill is based on a homogeneous distribution of the moisture content to increase waste biodegradation. Most of studies have shown that Electrical Resistivity Tomography (ERT) can be a suitable method to study water content variation (2D and 3D). ERT is influenced by many physical parameters and no single relationship with volumetric water content was yet established for Municipal ...

Material Characterization Method Development: From Education to Design Optimization

C. Morgan[1], N. Kenkare[1], M. Williams[2], A. Peterson[2], and D. Williams[2]
[1]Alcon Eye Care Division of Novartis R&D, Duluth, GA
[2]Alcon Eye Care Division of Novartis R&D and Georgia Institute of Technology Co-op Program, GA

Introduction of silicone hydrogel contact lens materials provided products of unprecedented capability to deliver oxygen to the eye during wear. One additional material characteristic of interest is the material’s permeability to ions. This paper discusses descriptive tools and optimization of an impedance method of characterizing ion permeability. A physical model of conductive paper with ...

Dynamic Simulation of Bone Morphogenetic Protein Patterning in a 3D Finite-Element Model of the Danio Rerio Embryo

D. Umulis, and S. Lee
Purdue University
West Lafayette, IN

Zebrafish development of the dorsoventral axis relies on the spatiotemporal distribution of Bone Morphogenetic Protein (BMP) signaling, which is regulated by numerous secreted molecules such as Tolloid, Sizzled, and Chordin. The rich dorsal/ventral patterning network must achieve both spatial precision in the patterning of downstream targets and confernspatial precision at distinct time points in ...

Thermal and Fluid Dynamics Studies Applied to Steel Industry

G. Tracanelli[1], M. Culos[1]
[1]Studio di Ingegneria Industriale Tracanelli, San Vito al Tagliamento, Italy

The energy pay back is one of the most interesting field especially in the steel industry where this contribution is strictly connected to steams and emissions inside and outside the plant. Perhaps, this application is sometimes disturbed by a strong variation of emissions (\"off gas\"). One example is the arc furnace where the process is very discontinuous and there are many fluctuations in the ...

Kinetic Investigation of a Mechanism for Generating Microstructures on Polycrystalline Substrates Using an Electroplating Process

T. Soares[1], H. Mozaffari[2], H. Reinecke[1]
[1]Universität Freiburg, Freiburg im Breisgau, BW, Germany
[2]Hochschule Furtwangen, Tuttlingen, BW, Germany

The purpose of this study is to understand the growth mechanism of copper (Cu) films on a Cu-Zn system substrate with a pre-defined pattern. The pattern was defined by conducting a selective etching process on a two-phase polycrystalline substrate. As a result of this process, there were etched regions correspondent to beta-phase crystals and quasi non-etched regions that belong to alpha-phase ...

Parametric Study of Electrolyte-Supported Planar Button Solid Oxide Fuel Cell

A. Aman[1], R. Gentile[1], Y. Xu[1], N. Orlovskaya[1]
[1]Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL, USA

Fuel cells are devices that convert chemical energy of a fuel into electrical energy through electrochemical processes. One of the types of fuel cell is the Solid Oxide Fuel Cell (SOFC) that uses solid ceramics for electrolytes. Numerical simulation involves constructing a mathematical model of the SOFC and use of specifically designed software programs that allows the user to manipulate the ...

The Application of Low Temperature Plasma in COMSOL Multiphysics

Cheng-Che (Jerry) Hsu[1]
[1]Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan

Multiphysics simulation was used in this work to model inductively coupled plasmas (ICPs). Developing a model of an ICP is challenging due to the complex relationship between the applied electric field and mixture of chemical species that develops. A preliminary model was developed and validated for an Ar/O2 plasma including neutral, ionic, and all major reactions. The validated model was used to ...

Modeling Revitalization of Atmospheric Water

R. Coker[1], J. Knox[1]
[1]NASA, Marshall Space Flight Center, Huntsville, AL, USA

Developments intended to improve system efficiency and reliability for water and carbon dioxide separation systems to be used on crewed vehicles combine sub-scale systems testing and multiphysics simulations. This paper describes the development of COMSOL Multiphysics® simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within NASA's ...

Fully Coupled FEM Modeling of the Swelling Behavior of Human Intervertebral Disc in Response to a Change in Chemical Environment

G. K. Mistri[1], K. J. Suthar[2]
[1]Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
[2]Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA

The swelling behavior of human intervertebral disc is strongly influenced by chemical changes in the surrounding environment. Swelling of IVD is governed by various physical phenomena, including chemical and electric potential based transport, electrical charge balance, and swelling due to concentration difference within IVD relative to surrounding fluid. This change in geometry can be described ...

Quick Search

2741 - 2750 of 2856 First | < Previous | Next > | Last