Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Capacitive Deionization for Desalinating Complex Streams - new

D. Cardoen[1,2], B. B. Sales[1], J. Helsen[1], A. Verliefde[2]
[1]VITO, Mol, Belgium
[2]Ghent University, Ghent, Belgium

Capacitive deionization (CDI) is a desalination technology which is based on the storage of ions in the electrical double layer of a pair of oppositely polarized porous carbon electrodes, which are usually assembled using activated carbon particles (Figure 1). It is efficiently deployed for desalinating water with moderate salt content (eg in domestic water softening)[1]. To broaden its ...

Multiphysics Study into Compression Rings, Coated Against Uncoated - new

M. Dickinson[1,2], N. Renevier [1], J. Calderbank[2,3]
[1]The Jost Institute, School of Computing, Engineering & Physical Sciences, University of Central Lancashire, Preston, UK
[2]Racing to Research Team, School of Computing, Engineering & Physical Sciences, University of Central Lancashire, Preston, UK
[3]School of Computing, Engineering & Physical Sciences, University of Central Lancashire, Preston, UK

Internal combustion engine components have been a main research interest over many decades. The structural mechanics and dynamics of the piston rings has been a large focus of work in order to gain a greater understanding of the how the piston ring dynamics affect the piston ring. Piston rings are often coated to reduce the level of wear on the ring as they will suffer substantial levels of ...

Optimization of Micro-Structured Waveguides in Lithium Niobate (Z-Cut) - new

H. Karakuzu[1], M. Dubov[1], S. Boscolo[1]
[1] Aston University, Birmingham, UK

We present an optimization procedure to improve the propagation properties of the depressed-cladding, buried micro-structured waveguides formed in a z-cut lithium niobate (LN) crystal by high repetition rate femtosecond (fs) laser writing. It is shown that the propagation wavelength for which the confinement losses of ordinary (O) and extraordinary ordinary (E) polarizations are below 1 dB/cm ...

Fast Computation of Capacitance Matrix and Potential Distribution for Multiconductor in Non-Homogenous Multilayered Dielectric Media

S.M. Musa[1], and M.N.O. Sadiku[1]

[1]Prairie View A&M University Networking Academy, Prairie View, Texas, USA

This paper presents the fast computational and modeling of multiconductor transmission lines interconnect in non-homogenous multilayered dielectric media using the finite element method (FEM). We illustrate the potential distribution of the multiconductor transmission lines for the models and their solution time. We compared some of our results of computing the capacitance matrix with method of ...

Nonlinear Ferrohydrodynamics of Magnetic Fluids

Markus Zahn
Massachusetts Institute of Technology, Cambridge, MA, USA

Markus Zahn received all his education at MIT, was a professor in the Department of Electrical Engineering at the University of Florida, Gainesville from 1970-1980, and then joined the MIT Department of Electrical Engineering and Computer Science faculty in 1980. He works in the Laboratory for Eelectromagnetic and Eelectronic Systems, in the MIT High Voltage Research Laboratory, is the Director ...

Shape, Convection and Convergence

R. Pryor
Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

COMSOL Multiphysics software, when properly configured, can readily solve modeling problems in the laminar flow regime using the standard Navier-Stokes equations or in the fully turbulent flow regime using the kappa-epsilon model. Failure to solve a particular model is typically manifested by instability in the calculation and a failure of the model to converge. This paper presents a new ...

Expanding Your Materials Horizons

R.W. Pryor
Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

The concept of virtual prototyping can be found linked to many different keywords in the literature: modeling, look-ahead problem solving, etc. This poster paper briefly discusses the potential real benefits that can be realized through pre-build cost savings, minimization of the number of prototype builds, and post-build problem avoidance for physical prototypes and production products. ...

COMSOL Modelling of the Wind Effect on a PV Platform

A. Georgescu, and A. Damian
Technical University of Civil Engineering Bucharest, Bucharest, Romania

The objective of the paper is the assessment of the wind load applied to a real photovoltaic (PV) platform installed on a site situated in Brasov, which belongs to the Transilvania University. The platform has a double-tracking axis mechanism which allows the rotation of the platform disk depending on the sun position, in order to gather the maximum solar yield to produce electricity. The study ...

From customer requirement to product requirement with COMSOL

A.B. Nilsson
BD Medical - Medical Surgical Systems, Helsingborg, Sweden

Anders B Nilsson graduated M. Sc. in engineering physics from Lund University in Sweden. He has been working in the R&D department at BD Medical as principal engineer and project leader since 2005. He uses COMSOL for a wide range of functions, such as early concept development and qualification of products.

Numerical Homogenization in Multi-scale Models of Musculoskeletal Mineralized Tissues

A. Gerisch[1], S. Tiburtius[1], Q. Grimal[2], and K. Raum[3]
[1]Technische Universität Darmstadt, Darmstadt, Germany
[2]Laboratoire d’Imagerie Paramétrique, UPMC, Paris, France
[3]Julius Wolff Institut & Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany

Musculoskeletal mineralized tissues (MMTs), e.g. bone, are hierarchical composite materials. Their effective elastic properties at different scales are of interest for computational studies of the MMT’s response to mechanical loading but also to realistically simulate implant osseointegration. We combine multi-scale and multi-modal experimental techniques with mathematical modelling of MMTs ...

2741 - 2750 of 3379 First | < Previous | Next > | Last