Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Digital Microfluidic Droplet Adapter for Interconnection of Biochips

R. Zhu[1], X. Xiong[2], P. Patra[1], C. Jin[1], J. Hu[3]
[1]Department of Biomedical Engineering, University of Bridgeport, Bridgeport, CT, USA
[2]Department of Electrical & Computer Engineering, University of Bridgeport, Bridgeport, CT, USA
[3]Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA

In this research, we use the COMSOL Multiphysics® software to design and simulate a digital microfluidic droplet adapter for board-level biochip integration. Digital Microfluidic Biochip (DMFB) has gained tremendous research interest in recent years due to its importance in Lab-on-a-Chip and other bio-MEMS (bio-Microelectromechanical Systems) devices. However, different DMFB microarray from ...

Thermal Study of Valve Regulated Lead Acid Batteries and Electronics Chamber Used in Stand-Alone Street Lighting Applications

D. Groulx[1], J. Skaalum[1], T. Jamieson[1]
[1]Mechanical Engineering, Dalhousie University, Halifax, NS, Canada

This paper presents a study on the heat generation of Valve-Regulated Lead Acid (VRLA) batteries used in off-grid streetlighting applications from PoleCo, a Halifax based company. One goal of the project was to produce validated COMSOL® models of the enclosure that holds these VRLA batteries. This model can then be used to investigate methods of reducing the temperature of the batteries based on ...

Methods to Optimize Plasmonic Structure Integrated Single-Photon Detector Designs

M. Csete[1], G. Szekeres[1], B. Banhelyi[2], A. Szenes[1], T. Csendes[2], G. Szabo[1]
[1]Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
[2]Department of Computational Optimization, University of Szeged, Szeged, Hungary

Introduction: Predesigned plasmonic structures are capable of enhancing optical phenomena, the key concept is tailoring the integrated devices' composition to engineer the spectral response and near-field distribution [1]. Our previous studies have shown that three-quarter-wavelength periodic plasmonic structures are capable of improving single-photon detection efficiency [2, 3]. Parametric sweep ...

Analysis of 3-D Printed Structural Components for Cube Satellites

C. Herzfeld[1]
[1]SPAWAR Systems Center (SSC) ATLANTIC, Charleston, SC, USA

Additive manufacturing uses 3D printing to build physical parts from CAD-based designs. The technology includes fused deposition modeling (FDM) and selective laser sintering (SLS) methods. 3-D printing is of particular interest for smaller, one-of-a-kind, customizable products. A cube satellite (CubeSat) containing fiber reinforced SLS parts has been successfully launched (Ref 1). Lower ...

Heat Transfer in Crossflow Heat Exchangers for Application with Microreactors

R. Pryor[1]
[1]Pryor Knowledge Systems, Inc., Bloomfield Hills, MI, USA

This paper explores methods of improving the heat transfer coefficient in a crossflow heat exchanger as would be employed in conjunction with an experimental or production microreactor. This derivation of the Cross-Flow Heat Exchanger from the COMSOL Multiphysics® software Model Library modifies the substrate geometry by adding two additional layers and uses the material copper in certain ...

Simulation of a Polyimide Based Micromirror

A. Arevalo[1], S. Ilyas[2], D. Conchouso[1], I. G. Foulds[1,3]
[1]Computer, Electrical & Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[2]Physical Sciences & Engineering (PSE), King Abdullah University of Science & Technology, Thuwal, Saudi Arabia
[3]School of Engineering, University of British Columbia - Okanagan, Vancouver, BC, Canada

The simulation of a micromirror using polyimide as the structural material is presented. The simulation was used to verify the initial design parameters and to explore the different characteristics of the electromechanical device. For simulation simplicity the electrodes are integrated as part of the structural layer. The device thickness is 6 μm while the electrodes are 300 nm thick. For the ...

Finite Element Simulations of Pulsed Thermography Applied to Porous Carbon Fibre Reinforced Polymers

G. Mayr[1], B. Plank[1], J. Suchan[1], G. Hendorfer[1]
[1]University of Applied Sciences, Wels, Austria

Porosity in carbon fiber reinforced polymers (CFRP) as shown in figure 1 degrades the engineering performance, especially the interlaminar shear strength [1]. In the aviation industry a porosity level of 2.5 % has become the maximum level of acceptance. The presence of air-filled voids (pores) has strong effects on the thermal diffusivity. Pulsed thermography offers a rapid, non-destructive ...

Simulation and Performance of Pulsed Pipe Flow Mixing in Non-Newtonian Liquid Dispersion Media

T. Koiranen[1], J. Tamminen[1], A. Häkkinen[1]
[1]LUT Chemtech, Lappeenranta University of Technology, Lappeenranta, Finland

A non-newtonian oil dispersion in a pulsed flow pipe system was mixed in a circulation loop pipe with custom-made static mixers. The rotor-pump was used in a non-pulsed flow circulation, and diaphragm pump for pulsed flow circulation. Modeling was done using COMSOL Multiphysics® 4.3b. The simulations were performed using single-phase laminar flow model in steady-state and in time-dependent modes ...

Energy Pile Simulation – an Application of THM-Modeling

E. Holzbecher[1]
[1]Georg-August University, Göttingen, Germany

Energy piles, i.e. heat exchangers located within the foundation piles of buildings, are used for heating of cooling purposes. Although the absolute values of deformations and temperature gradients are low or moderate, the entire setting can be influenced by thermo-hydro-mechanical coupling. The fluctuating thermal regime may affect the deformation of pile and surrounding ground as effect of ...

Influence of Air Gap Length and Cross-Section on Magnetic Circuit Parameters

A. Polit[1], R. Jez[1]
[1]ABB Corporate Research Center, Krakow, Poland

The air gap is one of the most crucial part of magnetic circuits, especially in high-power inductors. It significantly modifies the parameters of magnetic devices by increasing the saturation current, linearizing B-H curve of magnetic circuit and causing a decreasing in the inductance. Therefore the optimal selection of shape and dimensions of the air gap is very important from the design point ...

Quick Search

3181 - 3190 of 3626 First | < Previous | Next > | Last