Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Analysis of 3D Biocompatible Additive Structure Using COMSOL Multiphysics® Software

E. Lacatus[1], M. A. Sopronyi[2], G. C. Alecu[1], A. Tudor[1]
[1]Polytechnic University of Bucharest, Bucharest, Romania
[2]INFLPR -National Institute for Laser Plasma and Radiation Physics, Bucharest, Romania

For biocompatible prosthetics, from dental implants up to bone parts, manufacturers have to find the best way to correlate process parameters and the material properties as to meet the unique needs of individuals. Additive manufacturing techniques aim at creating complex biocompatible structures able to overcome the present shortfalls of the metal and metal alloys implants related to ...

Implicit LES for Two-Dimensional Circular Cylinder Flow by Using COMSOL Multiphysics® Software

M. Hashiguchi[1]
[1]Keisoku Engineering System Co.,Ltd., Tokyo, Japan

In this paper, implicit Large Eddy Simulation (LES) based on finite-element analysis is performed in order to investigate two-dimensional circular cylinder incompressible flow. Implicit LES attempts time-dependent flow computation with no explicit turbulence model. Here, two types of circular cylinder with/without surface roughness, are treated. The Reynolds number Re based of the diameter of ...

COMSOL Derived Universal Scaling Model For Low Reynolds Number Viscous Flow Through Microfabricated Pillars – Applications to Heat Pipe Technology

N. Srivastava[1], and C.D. Meinhart[1]
[1]Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara California, USA

Cooling of high-power density electronic devices remains a challenge. Microfluidic heat-pipes with the potential of achieving ultra-high thermal conductivities offer a low-cost technology for cooling electronics. To achieve high thermal conductivity, it is critical to maximize the rate of liquid transport inside the heat pipe. We propose a novel array of microfabricated pillars to maximize liquid ...

Microsoft Technical Computing

H. Steepler
Microsoft, Sweden

Henrik Steepler earned his PhD in Computer Science in 1999 at Chalmers University, Sweden. Since 2003, he has been working at Microsoft on emerging markets like Security, Virtualization, and since 2007 on their High Performance Computing (HPC) initiative. He is now managing the partner network for Microsoft in Europe, the Middle East, and Africa around HPC.

On the Drying Dynamics in Biofilters

F. Schönfeld
Hochschule RheinMain
University of Applied Sciences
Wiesbaden, Germany

The performance of biofilters relies on the presence of a sufficient amount of water in the biofilter material. And breakdown of filtration performance is often caused by inappropriate water content. The present study focuses on the drying dynamics within such filter, which are modelled as wetted porous media. Analyzing gas flow and water content we find that such systems exhibit instable ...

Numerical Investigation of Heat Transfer of Aluminum Metal Foam Subjected to Pulsating Flow

A. Bayomy[1], M. Z. Saghir[1]
[1]Ryerson University, Toronto, ON, Canada

The rapid development of electronic devices leads to more demand for efficient cooling techniques. Porous media represent a convincing passive cooling enhancer due to its large contact surface area to volume ratio and intense mixing of fluid flow. In the present work, numerical studies have been investigated to study the heat transfer characteristics of aluminum porous metal foam subjected to ...

Impact of Electrode Surface/Volume Ratio on Li-ion Battery Performance

S. Das[1], J. Li[2], R. Hui[1]
[1]University of Kansas, Lawrence, KS, USA
[2]Kansas State University, Manhattan, KS, USA

The adoption of micro- and nanostructured electrodes is a promising technique to improve the performance of Li-ion battery, which increases the electrode surface area and improves the efficiency of ion exchange between the electrode and electrolyte. This performance improvement is supported by the results of our numerical simulation based of a Li+ battery in COMSOL Multiphysics® software. The ...

Thermal Modeling in a Historical Building - Improving Thermal Comfort Through the Siting of a Passive Mass of Phase Change Material

D. Groulx[1], F. Herbinger[1], L. Desgrosseilliers[1]
[1]Mechanical Engineering, Dalhousie University, Halifax, NS, Canada

A model of an office room was created in the COMSOL Multiphysics® software to simulate heat transfer and study the impact of siting a mass of phase change material (PCM) in a room to increase thermal comfort. This study determined that incorporating the selected PCM, butyl stearate, in the ceiling and in the floor did not alter the temperature of the room significantly after one hour. ...

Simulations of Micropumps Based on Tilted Flexible Structures

M. J. Hancock[1], N. H. Elabbasi[1], M. C. Demirel[2]
[1]Veryst Engineering, LLC., Needham, MA, USA
[2]Pennsylvania State University, University Park, PA, USA

Pumping liquids at small scales is challenging because of the principle of reversibility: in a viscous regime, the flow streamlines through a fixed geometry are the same regardless of flow direction. Recently we developed a class of microfluidic pump designs based on tilted flexible structures that combines the concepts of cilia (flexible elastic elements) and rectifiers (e.g., Tesla pump). We ...

Simulation of a New PZT Energy Harvester with a Lower Resonance Frequency Using COMSOL Multiphysics®

H. Elbahr[1], T. Ali[1,2], A. Badawi[1], S. Sedky[1]
[1]Zewail City of Science and Technology - Cairo, Cairo, Egypt
[2]Cairo University, Cairo, Egypt

Energy harvesting from environmental vibration nowadays is feasible because of natural oscillations like that caused by air or liquid flow and by exhalation or the heartbeat of a human body. This vibration frequency is typically low (in order of less than 1 kHz). Accordingly, low-frequency vibration based energy harvesting systems are an important research topic; these systems can be used for ...

Quick Search

3191 - 3200 of 3626 First | < Previous | Next > | Last