Technical Papers and Presentations

Here you will find presentations given at COMSOL Conferences around the globe. The presentations explore the innovative research and products designed by your peers using COMSOL Multiphysics. Research topics span a wide array of industries and application areas, including the electrical, mechanical, fluid, and chemical disciplines. Use the Quick Search to find presentations pertaining to your application area.

Calculating the Fatigue Crack Initiation in Machine Parts under Random Multiaxial Loading

A. Nieslony[1], and C.M. Sonsino[2]
[1] Opole University of Technology, Department of Mechanics and Machine Design, Opole, Poland
[2] Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, Darmstadt

The authors present a method for estimating fatigue life due to crack initiation using FEM under multiaxial random loading. The proposed method uses the multiaxial fatigue failure criteria based on the critical plane concept. Damages were determined with the spectral method from power spectral density (PSD) function of the equivalent stress history. The authors used linear-elastic ...

A Modeling Study of Diffusion Wear of Carbide Tools in Titanium Machining

M. Crosskey and E. Gutierrez-Miravete
Department of Engineering and Science, Rensselaer at Hartford, Hartford, CT, USA

COMSOL Multiphysics has been used to model the temperature distribution produced inside a tool as a result of the forces and friction involved in a cutting process, along with the resulting diffusional flow of cobalt binder from the tool.The model uses as the input tool rake and flank face temperatures determined either experimentally or from other models, and then proceeds to couple the thermal ...

Using COMSOL Multiphysics in Eddy Current Non Destructive Testing Context

L. Santandrea, and Y. Le Bihan
Laboratoire de Génie Electrique de Paris, Gif-sur-Yvette, France

Eddy current testing (ECT) is widely used to check the integrity of electrically conducting parts and notably to detect flaws. It is based on the interaction between a probe and the part under testing. The finite element method (FEM) is well fitted to the modelling of these kinds of problems because of its large flexibility which allows to deal with complex probe and part configurations. In this ...

Analysis Of Particle Trajectories For Magnetic Drug Targeting

A. Heidsieck, and B. Gleich
Zentralinstitut für Medizintechnik, TU München, München, Germany

The technique of magnetic drug targeting binds genetic material or drugs to superparamagnetic nanoparticles and accumulates them via an external magnetic field in a target region. However, it is still a challenge for this approach to succeed in areas with high flow rates, like the aorta or the heart ventricle. The magnetic field sources have to be accurately optimized and adapted to the local ...

Simulating A Fan For Industrial Ventilation

G. Argentini
Riello Burners, Italy

This work talks on simulation of a ventilating structure for an industrial burner. The mathematical model is based on the frozen-rotor technique, and the numerical simulation is used for resolution of fluid dynamics equations for the air flow into the rotating wheel and into the static volute of the fan. The numerical results obtained with COMSOL’s CFD module are compared with experimental data ...

From CT Scan to Plantar Pressure Map Distribution of a 3D Anatomic Human Foot

S. Gerbino, and P. Franciosa
University of Molise, School of Engineering, Via Duca degli Abruzzi, Termoli, Italy

Understanding the stress-strain behavior of human foot tissues and pressure map distributions at the plantar interface is of interest into biomechanical investigations. In particular, monitoring plantar pressure maps is crucial to establishing the perceived human comfort of shoe insoles. A 3D anatomical detailed FE human foot model was created, starting from CT (Computer Tomography) scans of a ...

Patch Antenna Model for Unmanned Aerial Vehicle

T. Eppes, I. Milanovic, and S. Thiruvengadam
University of Hartford
West Hartford, CT

Patch antennas are widely used in communications links with unmanned aerial vehicles. Their hemispherical send and receive patterns enable the systems to maintain radio frequency contact over a wide range of vehicular attitudes. A microstrip-fed design offers other attractive features including lightweight, inexpensive, and a 3-D structure that can be easily integrated into the fuselage. This ...

Design of a RF MEMS Switch

B. Mishra, M. P. S. Naidu, J. Raj, and Z. C. Alex
VIT University
Vellore
Tamilnadu, India

This paper presents a novel design of a RF MEMS Switch. The switch is a capacitive type, which is actuated by an electrostatic force. The structure of the switch consists of a CPW (coplanar waveguides) transmission lines and a suspended membrane. The modelling of switch is done using COMSOL software and RF characteristics is found out by using CST software.

Design of a Miniaturized RF MEMS Based Single-Bit Phase Shifter

A. Chakraborty, A. Kundu, S. Chatterjee, and B. Gupta
Jadavpur University
Kolkata
West Bengal, India

This paper presents a novel design of single-bit RF MEMS phase shifter. The basic novelty introduced for phase shifter design in this case, is by scaling down of the lateral dimensions of the conventional RF MEMS shunt switch by 10 times. The Mechanical and Electromechanical analysis of the designed miniature RF MEMS fixed-fixed beam is performed using COMSOL Multiphysics v.3.5a as an FEM ...

Carbon MEMS Accelerometer

J. Strong, and C. Washburn
Sandia National Laboratories
Albuquerque, NM

The newly emerging field of carbon-based MEMS (C-MEMS) attempts to utilize the diverse properties of carbon to push the performance of MEMS devices beyond what is currently achievable. Our design employs a carbon-carbon composite using nano-materials to build a new class of MEMS accelerometer that is hyper-sensitive over a dynamic range from micro-G to hundreds of G’s – far surpassing the ...

Quick Search